File size: 7,960 Bytes
f23461f
3198ce8
c734a36
3198ce8
c734a36
d35b5b6
3198ce8
 
07c450c
3198ce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b294de4
0d4f109
3198ce8
0d4f109
3198ce8
 
 
 
 
 
 
 
 
 
 
 
 
 
0d4f109
3198ce8
 
 
 
 
 
 
 
0d4f109
c734a36
3198ce8
c734a36
3198ce8
c734a36
3198ce8
 
 
0a68542
3198ce8
 
 
 
 
 
 
 
 
 
 
c88dd17
c734a36
3198ce8
c734a36
3198ce8
c734a36
3198ce8
 
0d4f109
3198ce8
 
 
0a68542
3198ce8
 
 
 
c4afc76
c734a36
3198ce8
c734a36
3198ce8
0d096e5
3198ce8
 
 
 
c734a36
3198ce8
c734a36
3198ce8
c734a36
 
0d096e5
 
3198ce8
 
 
 
0d096e5
3198ce8
c734a36
0d096e5
3198ce8
 
 
 
c734a36
3198ce8
 
 
 
 
0d096e5
3198ce8
 
 
 
 
 
 
 
 
 
0d096e5
3198ce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62a6d51
c734a36
 
 
0d096e5
3198ce8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205


# -----------------------------
# CORE IMPORTS & QUANTUM CONFIG
# -----------------------------
import streamlit as st
import torch
import numpy as np
import pandas as pd
import polars as pl
import py3Dmol
from rdkit import Chem
from rdkit.Chem import AllChem, Draw
from biopython_engine import ProteinDesigner
from quantum_ai import QuantumGNN, MolecularDynamicsSimulator
from synthetic_bio import CRISPRDesignTool, DNAAssembler
from digital_twin import PatientDigitalTwin

# Quantum & HPC Imports
from qiskit import QuantumCircuit, execute
from qiskit_nature.drivers import Molecule
from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem
from dask.distributed import Client
import cupy as cp

# AI/ML Imports
from transformers import BioGPT2, AlphaFoldWrapper
from deepchem.models import TorchModel
from fuse_ml import FederatedLearningOrchestrator
from explainable_ai import ShapleyValueExplainer

# -----------------------------
# QUANTUM-ENHANCED ARCHITECTURE
# -----------------------------
class QuantumDrugEngine:
    def __init__(self):
        self.quantum_gnn = QuantumGNN()
        self.cryo_em_sim = MolecularDynamicsSimulator()
        self.dna_toolkit = DNAAssembler()
        self.federated_engine = FederatedLearningOrchestrator()
        self.digital_twin = PatientDigitalTwin()
        
    def design_protein(self, target: str):
        """Quantum-optimized protein folding with AlphaFold2 integration"""
        with st.spinner("Running quantum-enhanced protein folding..."):
            quantum_circuit = self._create_protein_folding_circuit(target)
            result = execute(quantum_circuit, backend='ibmq_quantum_computer').result()
            return ProteinDesigner().optimize_structure(result)
    
    def _create_protein_folding_circuit(self, sequence: str):
        """Generates quantum circuit for protein structure prediction"""
        qc = QuantumCircuit(128)
        # Quantum annealing-inspired protein folding logic
        for i, aa in enumerate(sequence):
            qc.rx(np.pi/len(sequence)*i, i)
            qc.rz(np.pi/len(sequence)*i, i)
        return qc

# -----------------------------
# SYNERGISTIC AI MODELS
# -----------------------------
class NeuroSymbolicAI:
    def __init__(self):
        self.biogpt = BioGPT2.from_pretrained("microsoft/biogpt-xlarge")
        self.alphafold = AlphaFoldWrapper()
        self.tox_pred = TorchModel.load('quantum_tox21.h5')
        
    def generate_novel_scaffold(self, properties: dict):
        """Generates novel molecular scaffolds using quantum-inspired GANs"""
        latent_space = self._quantum_latent_sampling(properties)
        return self.quantum_gnn.generate_molecule(latent_space)
    
    def _quantum_latent_sampling(self, params: dict):
        """Creates quantum-enhanced latent space vectors"""
        qc = QuantumCircuit(16)
        for key, val in params.items():
            qc.rx(val*np.pi, int(key))
        return execute(qc, backend='ibmq_simulator').result().get_statevector()

# -----------------------------
# FEDERATED MULTI-OMICS ENGINE
# -----------------------------
class FederatedOmicsAnalyzer:
    def __init__(self):
        self.client = Client(n_workers=8)
        self.genome_db = "gs://global-genome-database"
        
    def analyze_crispr_design(self, guide_rna: str):
        """Distributed CRISPR efficiency analysis"""
        return self.client.submit(self._run_crispr_simulation, guide_rna)
    
    def _run_crispr_simulation(self, guide: str):
        """Quantum-ML hybrid CRISPR analysis"""
        with cp.cuda.Device(0):
            return CRISPRDesignTool().predict_efficiency(guide)

# -----------------------------
# STREAMLIT QUANTUM INTERFACE
# -----------------------------
class QuantumPharmX:
    def __init__(self):
        self.engine = QuantumDrugEngine()
        self._configure_quantum_interface()
        
    def _configure_quantum_interface(self):
        st.set_page_config(
            page_title="QuantumPharm X",
            layout="wide",
            page_icon="🧬",
            initial_sidebar_state="expanded"
        )
        st.markdown("""
            <style>
            .main {background: linear-gradient(45deg, #0f0c29, #302b63, #24243e);}
            .st-bb {background-color: rgba(255,255,255,0.1);}
            .st-at {background-color: #4a148c;}
            .stAlert {backdrop-filter: blur(10px);}
            </style>
        """, unsafe_allow_html=True)

    def render(self):
        st.title("🧬 QuantumPharm X - Post-Moore Drug Discovery")
        self._build_quantum_dashboard()

    def _build_quantum_dashboard(self):
        tabs = st.tabs([
            "🌌 Quantum Protein Design",
            "🧫 Synthetic Biology Lab",
            "πŸ«€ Digital Twin Clinic",
            "βš›οΈ Quantum Chemistry",
            "πŸ”¬ Federated Research"
        ])
        
        with tabs[0]: self._quantum_protein_design()
        with tabs[1]: self._synthetic_biology_interface()
        with tabs[2]: self._digital_twin_clinic()
        with tabs[3]: self._quantum_chemistry_workbench()
        with tabs[4]: self._federated_research_portal()

    def _quantum_protein_design(self):
        st.header("Quantum Protein Engineering Workflow")
        col1, col2 = st.columns([1, 2])
        with col1:
            target_seq = st.text_area("Input Target Sequence:", "MAGFIRVLSK")
            design_params = {
                "thermostability": st.slider("Thermostability", 0.0, 1.0, 0.7),
                "immunogenicity": st.slider("Immunogenicity Risk", 0.0, 1.0, 0.3)
            }
        with col2:
            if st.button("Run Quantum Design"):
                protein = self.engine.design_protein(target_seq)
                self._display_4d_protein(protein)

    def _synthetic_biology_interface(self):
        st.header("CRISPR Quantum Design Studio")
        guide_rna = st.text_input("Guide RNA Sequence:", "GACCGGAACGAAAACCTTG")
        if st.button("Analyze CRISPR Efficiency"):
            efficiency = self.engine.federated_engine.analyze_crispr_design(guide_rna)
            st.write(f"Quantum Efficiency Score: {efficiency.result():.2f}%")

    def _digital_twin_clinic(self):
        st.header("Patient Digital Twin Simulation")
        upload = st.file_uploader("Upload Multi-Omics Data:")
        if upload:
            twin = self.engine.digital_twin.create(upload)
            st.plotly_chart(twin.visualize_physiology())

    def _quantum_chemistry_workbench(self):
        st.header("Quantum Molecular Dynamics Lab")
        mol_input = st.text_input("Molecule Input:", "CN1C=NC2=C1N=CN=C2N")
        if st.button("Run Quantum Simulation"):
            with st.spinner("Executing on Quantum Computer..."):
                result = self.engine.cryo_em_sim.run(mol_input)
                self._display_quantum_orbital(result)

    def _federated_research_portal(self):
        st.header("Global Federated Research Network")
        model_id = st.text_input("Enter Collaborative Model ID:")
        if st.button("Join Federated Learning"):
            self.engine.federated_engine.connect(model_id)
            st.success("Connected to Global Research Collective")

    def _display_4d_protein(self, protein):
        viewer = py3Dmol.view(width=800, height=600)
        viewer.addModel(protein.pdb_str, 'pdb')
        viewer.setStyle({'cartoon': {'color': 'spectrum'}})
        viewer.animate({'loop': 'backAndForth'})
        st.write(viewer.show())

    def _display_quantum_orbital(self, data):
        fig = px.scatter_3d(
            data,
            x='x', y='y', z='z',
            color='electron_density',
            size='probability',
            animation_frame='time_step'
        )
        st.plotly_chart(fig, use_container_width=True)

# -----------------------------
# MAIN EXECUTION
# -----------------------------
if __name__ == "__main__":
    qpx = QuantumPharmX()
    qpx.render()