File size: 22,465 Bytes
347e5b4
 
 
92ff582
c734a36
d35b5b6
300a38a
 
 
07c450c
92ff582
 
347e5b4
 
92ff582
347e5b4
 
 
 
300a38a
92ff582
347e5b4
92ff582
 
300a38a
347e5b4
 
 
 
92ff582
 
b294de4
0d4f109
300a38a
0d4f109
347e5b4
 
300a38a
 
347e5b4
 
 
300a38a
347e5b4
 
 
 
 
 
 
 
 
 
 
 
 
 
92ff582
 
347e5b4
300a38a
 
92ff582
0d4f109
300a38a
 
 
 
347e5b4
300a38a
 
 
347e5b4
 
 
 
 
 
 
300a38a
 
347e5b4
300a38a
 
347e5b4
300a38a
 
c734a36
92ff582
c734a36
92ff582
347e5b4
 
 
 
 
 
300a38a
347e5b4
 
300a38a
347e5b4
 
300a38a
 
347e5b4
 
300a38a
347e5b4
 
 
 
 
 
 
 
 
300a38a
 
347e5b4
300a38a
 
 
 
 
 
347e5b4
 
300a38a
347e5b4
 
 
300a38a
347e5b4
300a38a
 
92ff582
347e5b4
92ff582
347e5b4
 
 
 
 
 
 
 
 
 
 
92ff582
347e5b4
 
 
 
300a38a
347e5b4
300a38a
 
 
347e5b4
300a38a
 
 
 
 
 
347e5b4
 
92ff582
347e5b4
92ff582
347e5b4
300a38a
347e5b4
 
 
300a38a
347e5b4
 
 
 
 
 
 
 
 
c88dd17
c734a36
92ff582
c734a36
92ff582
 
347e5b4
 
 
 
92ff582
300a38a
347e5b4
92ff582
347e5b4
300a38a
347e5b4
 
 
 
 
 
 
 
 
 
 
300a38a
347e5b4
300a38a
347e5b4
 
 
 
 
300a38a
347e5b4
 
 
 
 
 
 
 
 
 
300a38a
 
347e5b4
300a38a
 
347e5b4
300a38a
 
 
 
347e5b4
300a38a
347e5b4
300a38a
347e5b4
300a38a
347e5b4
300a38a
92ff582
 
 
347e5b4
 
 
 
92ff582
300a38a
347e5b4
300a38a
347e5b4
300a38a
92ff582
347e5b4
 
300a38a
347e5b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300a38a
 
 
 
 
 
 
347e5b4
 
 
300a38a
347e5b4
 
c4afc76
c734a36
92ff582
c734a36
92ff582
 
347e5b4
 
 
 
 
92ff582
300a38a
347e5b4
92ff582
 
 
347e5b4
92ff582
347e5b4
 
 
 
c734a36
347e5b4
c734a36
 
 
0d096e5
300a38a
347e5b4
 
 
300a38a
 
347e5b4
c734a36
347e5b4
 
 
 
 
92ff582
347e5b4
300a38a
347e5b4
 
 
 
c734a36
92ff582
 
 
 
 
0d096e5
347e5b4
92ff582
 
 
 
 
 
 
 
 
 
 
347e5b4
 
 
 
92ff582
 
347e5b4
0d096e5
92ff582
300a38a
 
92ff582
 
300a38a
92ff582
347e5b4
92ff582
347e5b4
 
 
 
92ff582
300a38a
347e5b4
92ff582
 
300a38a
347e5b4
92ff582
300a38a
347e5b4
92ff582
 
347e5b4
 
 
 
92ff582
347e5b4
 
92ff582
 
347e5b4
 
92ff582
 
 
 
 
 
 
347e5b4
92ff582
347e5b4
 
92ff582
347e5b4
 
 
 
 
 
 
 
92ff582
300a38a
347e5b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ff582
347e5b4
 
 
 
92ff582
347e5b4
 
 
92ff582
300a38a
 
 
 
 
347e5b4
300a38a
347e5b4
 
92ff582
347e5b4
 
 
 
92ff582
347e5b4
92ff582
347e5b4
92ff582
 
 
 
347e5b4
62a6d51
c734a36
 
 
0d096e5
347e5b4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509


# -----------------------------
# IMPORTS & CONFIGURATION
# -----------------------------
import streamlit as st
import requests
from rdkit import Chem
from rdkit.Chem import Draw
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from fpdf import FPDF
import tempfile
import logging
import os
import plotly.graph_objects as go
import networkx as nx
from typing import Optional, Dict, List, Any, Tuple
from openai import OpenAI

# Advanced logging configuration: capturing detailed operational logs for debugging and audit trails.
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("pris_debug.log", mode='w'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger("PRIS")

# -----------------------------
# GLOBAL CONSTANTS
# -----------------------------
API_ENDPOINTS: Dict[str, str] = {
    # Clinical Data Services
    "clinical_trials": "https://clinicaltrials.gov/api/v2/studies",
    "fda_drug_approval": "https://api.fda.gov/drug/label.json",
    "faers_adverse_events": "https://api.fda.gov/drug/event.json",

    # Chemical & Biological Data
    "pubchem": "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/{}/JSON",
    "pubmed": "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi",

    # Pharmacogenomics Resources
    "pharmgkb_variant_clinical_annotations": "https://api.pharmgkb.org/v1/data/variant/{}/clinicalAnnotations",
    "pharmgkb_gene": "https://api.pharmgkb.org/v1/data/gene/{}",
    "pharmgkb_gene_variants": "https://api.pharmgkb.org/v1/data/gene/{}/variants",

    # Semantic Medical Resources
    "bioportal_search": "https://data.bioontology.org/search",

    # Drug Classification Systems
    "rxnorm_rxcui": "https://rxnav.nlm.nih.gov/REST/rxcui.json",
    "rxnorm_properties": "https://rxnav.nlm.nih.gov/REST/rxcui/{}/properties.json",
    "rxclass_by_drug": "https://rxnav.nlm.nih.gov/REST/class/byDrugName.json"
}

DEFAULT_HEADERS: Dict[str, str] = {
    "User-Agent": "PharmaResearchIntelligenceSuite/1.0 (Professional Use)",
    "Accept": "application/json"
}

# -----------------------------
# SECRETS MANAGEMENT
# -----------------------------
class APIConfigurationError(Exception):
    """Custom exception for missing or misconfigured API credentials."""
    pass

try:
    # Retrieve API credentials from the secure Streamlit secrets store.
    OPENAI_API_KEY: str = st.secrets["OPENAI_API_KEY"]
    BIOPORTAL_API_KEY: str = st.secrets["BIOPORTAL_API_KEY"]
    PUB_EMAIL: str = st.secrets["PUB_EMAIL"]
    OPENFDA_KEY: str = st.secrets["OPENFDA_KEY"]

    # Ensure that all essential API keys are present.
    if not all([OPENAI_API_KEY, BIOPORTAL_API_KEY, PUB_EMAIL, OPENFDA_KEY]):
        raise APIConfigurationError("One or more required API credentials are missing.")

except (KeyError, APIConfigurationError) as e:
    st.error(f"Critical configuration error: {str(e)}")
    logger.critical(f"Configuration error: {str(e)}")
    st.stop()

# -----------------------------
# CORE INFRASTRUCTURE
# -----------------------------
class PharmaResearchEngine:
    """
    Core engine for integrating and analyzing pharmaceutical data.
    
    This engine provides utility functions for API requests and chemical data extraction,
    facilitating the seamless integration of multi-omics and clinical datasets.
    """
    
    def __init__(self) -> None:
        # Initialize the OpenAI client with the provided API key.
        self.openai_client = OpenAI(api_key=OPENAI_API_KEY)
        logger.info("PharmaResearchEngine initialized with OpenAI client.")
    
    @staticmethod
    def api_request(endpoint: str, 
                    params: Optional[Dict[str, Any]] = None,
                    headers: Optional[Dict[str, str]] = None) -> Optional[Dict[str, Any]]:
        """
        Perform a resilient API GET request.
        
        Args:
            endpoint (str): The URL endpoint for the API.
            params (Optional[Dict[str, Any]]): Query parameters to be included in the request.
            headers (Optional[Dict[str, str]]): Additional headers to include in the request.
        
        Returns:
            Optional[Dict[str, Any]]: JSON response from the API, or None if an error occurs.
        """
        try:
            logger.debug(f"Requesting data from {endpoint} with params: {params}")
            response = requests.get(
                endpoint,
                params=params,
                headers={**DEFAULT_HEADERS, **(headers or {})},
                timeout=(3.05, 15)
            )
            response.raise_for_status()
            logger.info(f"Successful API request to {endpoint}")
            return response.json()
        except requests.exceptions.HTTPError as http_err:
            logger.error(f"HTTP Error {http_err.response.status_code} for {endpoint}: {http_err}")
            st.error(f"API HTTP Error: {http_err.response.status_code} - {http_err.response.reason}")
        except Exception as e:
            logger.error(f"Network error during API request to {endpoint}: {str(e)}")
            st.error(f"Network error: {str(e)}")
        return None

    def get_compound_profile(self, identifier: str) -> Optional[Dict[str, str]]:
        """
        Retrieve a comprehensive chemical profile for a given compound.
        
        This method queries the PubChem API using a provided identifier (name or SMILES)
        and extracts key molecular properties.
        
        Args:
            identifier (str): The compound name or SMILES string.
        
        Returns:
            Optional[Dict[str, str]]: A dictionary containing molecular formula, IUPAC name,
            canonical SMILES, molecular weight, and LogP. Returns None if data is unavailable.
        """
        formatted_endpoint = API_ENDPOINTS["pubchem"].format(identifier)
        logger.info(f"Fetching compound profile from PubChem for identifier: {identifier}")
        pubchem_data = self.api_request(formatted_endpoint)
        
        if not pubchem_data or not pubchem_data.get("PC_Compounds"):
            logger.warning("No compound data found in PubChem response.")
            return None
            
        compound = pubchem_data["PC_Compounds"][0]
        profile = {
            'molecular_formula': self._extract_property(compound, 'Molecular Formula'),
            'iupac_name': self._extract_property(compound, 'IUPAC Name'),
            'canonical_smiles': self._extract_property(compound, 'Canonical SMILES'),
            'molecular_weight': self._extract_property(compound, 'Molecular Weight'),
            'logp': self._extract_property(compound, 'LogP')
        }
        logger.debug(f"Extracted compound profile: {profile}")
        return profile

    def _extract_property(self, compound: Dict[str, Any], prop_name: str) -> str:
        """
        Helper function to extract a specific property from PubChem compound data.
        
        Args:
            compound (Dict[str, Any]): The compound data dictionary from PubChem.
            prop_name (str): The name of the property to extract.
        
        Returns:
            str: The extracted property value as a string, or "N/A" if not found.
        """
        for prop in compound.get("props", []):
            if prop.get("urn", {}).get("label") == prop_name:
                # Attempt to return the string value regardless of underlying type.
                return str(prop["value"].get("sval", "N/A"))
        logger.debug(f"Property '{prop_name}' not found for compound.")
        return "N/A"

# -----------------------------
# INTELLIGENCE MODULES
# -----------------------------
class ClinicalIntelligence:
    """
    Module for analyzing clinical trial landscapes and regulatory data.
    
    This class encapsulates methods for retrieving and processing clinical trial data
    and FDA drug approval information.
    """
    
    def __init__(self) -> None:
        self.engine = PharmaResearchEngine()
        logger.info("ClinicalIntelligence module initialized.")
    
    def get_trial_landscape(self, query: str) -> List[Dict[str, Any]]:
        """
        Analyze the clinical trial landscape for a specified query.
        
        Args:
            query (str): A search term (condition, intervention, or NCT number) for clinical trials.
        
        Returns:
            List[Dict[str, Any]]: A list of dictionaries representing the top clinical trials.
        """
        # Determine appropriate parameters based on query format.
        params = {"query.term": query, "retmax": 10} if not query.startswith("NCT") else {"id": query}
        logger.info(f"Fetching clinical trials with query: {query}")
        trials = self.engine.api_request(API_ENDPOINTS["clinical_trials"], params=params)
        
        # Safely extract and return up to the first 5 trials.
        trial_list = trials.get("studies", [])[:5] if trials else []
        logger.debug(f"Retrieved {len(trial_list)} clinical trials for query '{query}'")
        return trial_list

    def get_fda_approval(self, drug_name: str) -> Optional[Dict[str, Any]]:
        """
        Retrieve FDA approval information for a specified drug.
        
        Args:
            drug_name (str): The name of the drug to query.
        
        Returns:
            Optional[Dict[str, Any]]: A dictionary containing FDA approval details or None if unavailable.
        """
        if not OPENFDA_KEY:
            st.error("OpenFDA API key not configured.")
            logger.error("Missing OpenFDA API key.")
            return None
        
        params: Dict[str, Any] = {
            "api_key": OPENFDA_KEY,
            "search": f'openfda.brand_name:"{drug_name}"',
            "limit": 1
        }
        logger.info(f"Fetching FDA approval data for drug: {drug_name}")
        data = self.engine.api_request(API_ENDPOINTS["fda_drug_approval"], params=params)
        
        if data and data.get("results"):
            logger.debug(f"FDA approval data retrieved for drug: {drug_name}")
            return data["results"][0]
        logger.warning(f"No FDA approval data found for drug: {drug_name}")
        return None

class AIDrugInnovator:
    """
    AI-Driven Drug Development Strategist powered by GPT-4.
    
    This module leverages advanced language models to generate innovative drug development
    strategies tailored to specific targets and therapeutic paradigms.
    """
    
    def __init__(self) -> None:
        self.engine = PharmaResearchEngine()
        logger.info("AIDrugInnovator module initialized with GPT-4 integration.")
        
    def generate_strategy(self, target: str, strategy: str) -> str:
        """
        Generate an AI-driven development strategy.
        
        Constructs a detailed prompt for GPT-4 to generate a strategic plan including
        target validation, lead optimization, clinical trial design, regulatory analysis,
        and commercial potential assessment.
        
        Args:
            target (str): The target disease, pathway, or biological entity.
            strategy (str): The desired development paradigm (e.g., "First-in-class").
        
        Returns:
            str: A formatted strategic blueprint in Markdown.
        """
        prompt: str = (
            f"As Chief Scientific Officer at a leading pharmaceutical company, "
            f"develop a {strategy} development strategy for the target: {target}.\n\n"
            "Include the following sections:\n"
            "- **Target Validation Approach:** Describe methods to confirm the target's role in the disease.\n"
            "- **Lead Optimization Tactics:** Outline strategies for refining lead compounds.\n"
            "- **Clinical Trial Design:** Propose innovative trial designs and endpoints.\n"
            "- **Regulatory Pathway Analysis:** Evaluate the regulatory strategy and compliance roadmap.\n"
            "- **Commercial Potential Assessment:** Analyze market opportunity and competitive landscape.\n\n"
            "Please format your response in Markdown with clear, well-defined sections."
        )
        
        logger.info(f"Generating AI strategy for target: {target} using paradigm: {strategy}")
        try:
            response = self.engine.openai_client.chat.completions.create(
                model="gpt-4",
                messages=[{"role": "user", "content": prompt}],
                temperature=0.7,
                max_tokens=1500
            )
            generated_strategy = response.choices[0].message.content
            logger.debug("AI strategy generation successful.")
            return generated_strategy
        except Exception as e:
            logger.error(f"Error during AI strategy generation: {str(e)}")
            return "Strategy generation failed. Please check API configuration and try again."

# -----------------------------
# STREAMLIT INTERFACE
# -----------------------------
class PharmaResearchInterface:
    """
    User Interface for the Pharma Research Intelligence Suite.
    
    This class configures and renders the Streamlit application, providing an interactive
    environment for exploring drug innovation, clinical trial analytics, compound profiling,
    regulatory insights, and AI-driven strategy generation.
    """
    
    def __init__(self) -> None:
        self.clinical_intel = ClinicalIntelligence()
        self.ai_innovator = AIDrugInnovator()
        self._configure_page()
        logger.info("PharmaResearchInterface initialized and page configured.")

    def _configure_page(self) -> None:
        """
        Configure the Streamlit page settings and apply custom CSS styles.
        """
        st.set_page_config(
            page_title="PRIS - Pharma Research Intelligence Suite",
            layout="wide",
            initial_sidebar_state="expanded"
        )
        st.markdown("""
            <style>
            .main {background-color: #f9f9f9; padding: 20px;}
            .stAlert {padding: 20px; border: 1px solid #e0e0e0; border-radius: 5px; background-color: #fff;}
            .reportview-container .markdown-text-container {font-family: 'Arial', sans-serif; line-height: 1.6;}
            </style>
            """, unsafe_allow_html=True)
        logger.info("Streamlit page configuration completed.")

    def render(self) -> None:
        """
        Render the complete Streamlit user interface with multiple functional tabs.
        """
        st.title("Pharma Research Intelligence Suite")
        self._render_navigation()
        logger.info("User interface rendered successfully.")
        
    def _render_navigation(self) -> None:
        """
        Create a dynamic, tab-based navigation layout for different modules.
        """
        tabs = st.tabs([
            "πŸš€ Drug Innovation",
            "πŸ“ˆ Trial Analytics",
            "πŸ§ͺ Compound Profiler",
            "πŸ“œ Regulatory Hub",
            "πŸ€– AI Strategist"
        ])
        
        with tabs[0]:
            self._drug_innovation()
        with tabs[1]:
            self._trial_analytics()
        with tabs[2]:
            self._compound_profiler()
        with tabs[3]:
            self._regulatory_hub()
        with tabs[4]:
            self._ai_strategist()

    def _drug_innovation(self) -> None:
        """
        Render the drug innovation module that generates AI-powered development strategies.
        """
        st.header("AI-Powered Drug Innovation Engine")
        col1, col2 = st.columns([1, 3])
        
        with col1:
            target = st.text_input("Target Pathobiology:", placeholder="e.g., EGFR mutant NSCLC")
            strategy = st.selectbox("Development Paradigm:", 
                                     ["First-in-class", "Fast-follower", "Biologic", "ADC", "Gene Therapy"])
            if st.button("Generate Development Blueprint"):
                with st.spinner("Formulating strategic plan..."):
                    blueprint = self.ai_innovator.generate_strategy(target, strategy)
                    st.markdown(blueprint, unsafe_allow_html=True)
                    logger.info("Drug innovation strategy generated and displayed.")

    def _trial_analytics(self) -> None:
        """
        Render the clinical trial analytics module to explore current trial landscapes.
        """
        st.header("Clinical Trial Landscape Analysis")
        trial_query = st.text_input("Search Clinical Trials:", placeholder="Enter condition, intervention, or NCT number")
        
        if st.button("Analyze Trial Landscape"):
            with st.spinner("Fetching trial data..."):
                trials = self.clinical_intel.get_trial_landscape(trial_query)
                
                if trials:
                    st.subheader("Top 5 Clinical Trials")
                    trial_data: List[Dict[str, Any]] = []
                    for study in trials:
                        trial_data.append({
                            "Title": study.get("protocolSection", {}).get("identificationModule", {}).get("briefTitle", "N/A"),
                            "Status": study.get("protocolSection", {}).get("statusModule", {}).get("overallStatus", "N/A"),
                            "Phase": study.get("protocolSection", {}).get("designModule", {}).get("phases", ["N/A"])[0],
                            "Enrollment": study.get("protocolSection", {}).get("designModule", {}).get("enrollmentInfo", {}).get("count", "N/A")
                        })
                    
                    # Display the clinical trial data in a table.
                    df = pd.DataFrame(trial_data)
                    st.dataframe(df)
                    
                    # Generate and display a bar chart of trial phase distribution.
                    st.subheader("Trial Phase Distribution")
                    phase_counts = df["Phase"].value_counts()
                    fig, ax = plt.subplots()
                    sns.barplot(x=phase_counts.index, y=phase_counts.values, ax=ax)
                    ax.set_xlabel("Trial Phase")
                    ax.set_ylabel("Number of Trials")
                    st.pyplot(fig)
                    logger.info("Clinical trial analytics displayed successfully.")
                else:
                    st.warning("No clinical trials found for the query.")
                    logger.warning("No clinical trial data returned from API.")

    def _compound_profiler(self) -> None:
        """
        Render the multi-omics compound profiler module for in-depth chemical analysis.
        """
        st.header("Multi-Omics Compound Profiler")
        compound = st.text_input("Analyze Compound:", placeholder="Enter drug name or SMILES")
        
        if compound:
            with st.spinner("Decoding molecular profile..."):
                profile = PharmaResearchEngine().get_compound_profile(compound)
                
            if profile:
                col1, col2 = st.columns(2)
                with col1:
                    st.subheader("Structural Insights")
                    mol = Chem.MolFromSmiles(profile['canonical_smiles'])
                    if mol:
                        # Generate and display the 2D molecular structure image.
                        img = Draw.MolToImage(mol, size=(400, 300))
                        st.image(img, caption="2D Molecular Structure")
                    else:
                        st.warning("Unable to render molecular structure from SMILES.")
                        logger.warning("RDKit failed to create molecule from SMILES.")
                
                with col2:
                    st.subheader("Physicochemical Profile")
                    st.metric("Molecular Weight", profile['molecular_weight'])
                    st.metric("LogP", profile['logp'])
                    st.metric("IUPAC Name", profile['iupac_name'])
                    st.code(f"SMILES: {profile['canonical_smiles']}")
                    logger.info("Compound profile details rendered.")
            else:
                st.warning("No compound data available. Please verify the input.")
                logger.warning("Compound profiler did not return any data.")

    def _regulatory_hub(self) -> None:
        """
        Render the regulatory intelligence hub module for accessing FDA and regulatory data.
        """
        st.header("Regulatory Intelligence Hub")
        st.write("Access detailed insights into FDA approvals and regulatory pathways.")
        drug_name = st.text_input("Enter Drug Name for Regulatory Analysis:", placeholder="e.g., aspirin")
        
        if st.button("Fetch Regulatory Data"):
            with st.spinner("Retrieving regulatory information..."):
                fda_data = self.clinical_intel.get_fda_approval(drug_name)
                if fda_data:
                    st.subheader("FDA Approval Details")
                    st.json(fda_data)
                    logger.info("FDA regulatory data displayed.")
                else:
                    st.warning("No FDA data found for the specified drug.")
                    logger.warning("FDA regulatory data retrieval returned no results.")

    def _ai_strategist(self) -> None:
        """
        Render the AI strategist module for generating innovative drug development strategies.
        """
        st.header("AI Drug Development Strategist")
        st.write("Utilize GPT-4 to craft cutting-edge drug development strategies.")
        target = st.text_input("Enter Target Disease or Pathway:", placeholder="e.g., KRAS G12C mutation")
        
        if st.button("Generate AI Strategy"):
            with st.spinner("Generating AI-driven strategy..."):
                strategy = self.ai_innovator.generate_strategy(target, "First-in-class")
                st.markdown(strategy, unsafe_allow_html=True)
                logger.info("AI-driven strategy generated and displayed.")

# -----------------------------
# MAIN EXECUTION
# -----------------------------
if __name__ == "__main__":
    try:
        interface = PharmaResearchInterface()
        interface.render()
        logger.info("PRIS application launched successfully.")
    except Exception as e:
        logger.critical(f"Unexpected error during application launch: {str(e)}")
        st.error(f"Application failed to start due to an unexpected error: {str(e)}")