drugapp / app.py
mgbam's picture
Update app.py
2e162a8 verified
raw
history blame
19.5 kB
import streamlit as st
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel
from rdkit import Chem
from rdkit.Chem import Draw
from fpdf import FPDF
import tempfile
import time
import requests
import xml.etree.ElementTree as ET
import json
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Optional, Dict, List, Any
import os
import logging
# Setup logging
logging.basicConfig(level=logging.ERROR) #Log only errors
# API Endpoints (Centralized Configuration)
API_ENDPOINTS = {
"clinical_trials": "https://clinicaltrials.gov/api/v2/studies",
"pubchem": "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/{}/JSON",
"pubmed": "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi",
"who_drugs": "https://health-products.canada.ca/api/drug/product",
#"ema_reports": "https://www.ema.europa.eu/api/search/medicines", #Removed due to 403
"fda_drug_approval": "https://api.fda.gov/drug/label.json", # Updated this to use base API
"faers_adverse_events": "https://api.fda.gov/drug/event.json", # Updated this to use base API
"pharmgkb": "https://api.pharmgkb.org/v1/data/variant/{}/clinicalAnnotations",
"bioportal": "https://data.bioontology.org/ontologies"
}
#Email addresses
#Email addresses
if "PUB_EMAIL" in st.secrets:
PUBMED_EMAIL = st.secrets["PUB_EMAIL"]
else:
PUBMED_EMAIL = None
st.error("PubMed email not found in secrets. Please add the PUB_EMAIL to secrets.")
CLINICALTRIALS_EMAIL = PUBMED_EMAIL
# Retrieve the BioPortal API Key from secrets
if "BIOPORTAL_API_KEY" in st.secrets:
BIOPORTAL_API_KEY = st.secrets["BIOPORTAL_API_KEY"]
else:
BIOPORTAL_API_KEY = None
st.error("BioPortal API key not found in secrets. Please add the BIOPORTAL_API_KEY to secrets.")
# Retrieve the OpenFDA API Key from secrets
if "OPENFDA_KEY" in st.secrets:
OPENFDA_KEY = st.secrets["OPENFDA_KEY"]
else:
OPENFDA_KEY = None
st.error("OpenFDA API key not found in secrets. Please add the OPENFDA_KEY to secrets.")
# Initialize AI Agent (Context-aware)
content_agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=HfApiModel())
# --- Utility Functions ---
def _query_api(endpoint: str, params: Optional[Dict] = None) -> Optional[Dict]:
"""Handles API requests with robust error handling."""
try:
response = requests.get(endpoint, params=params, timeout=15)
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
return response.json()
except requests.exceptions.RequestException as e:
st.error(f"API request failed: {e} for endpoint {endpoint}. Please check connectivity and the endpoint.")
logging.error(f"API request failed: {e} for endpoint {endpoint}.")
return None
def _query_pubmed(query: str, email: Optional[str] = PUBMED_EMAIL) -> Optional[Dict]:
"""Queries PubMed with robust error handling."""
if not email:
st.error("PubMed email not configured.")
return None
params = {
"db": "pubmed",
"term": query,
"retmax": 10,
"retmode": "json",
"email": email
}
return _query_api(API_ENDPOINTS["pubmed"], params)
def _get_pubchem_smiles(drug_name: str) -> Optional[str]:
"""Retrieves SMILES from PubChem, returns None on failure."""
url = API_ENDPOINTS["pubchem"].format(drug_name)
data = _query_api(url)
if data and 'PC_Compounds' in data and data['PC_Compounds'][0]['props']:
#Check if props exists and find SMILES value
for prop in data['PC_Compounds'][0]['props']:
if 'name' in prop and prop['name'] == 'Canonical SMILES':
return prop['value']['sval']
return None
def _draw_molecule(smiles: str) -> Optional[any]:
"""Generates a 2D molecule image from SMILES."""
try:
mol = Chem.MolFromSmiles(smiles)
if mol:
img = Draw.MolToImage(mol)
return img
else:
st.error("Invalid SMILES string.")
return None
except Exception as e:
st.error(f"Error generating molecule image: {str(e)}")
logging.error(f"Error generating molecule image: {str(e)}")
return None
def _get_clinical_trials(query: str, email:Optional[str] = CLINICALTRIALS_EMAIL) -> Optional[Dict]:
"""Queries clinicaltrials.gov with search term."""
if not email:
st.error("Clinical Trials email not configured.")
return None
if query.upper().startswith("NCT") and query[3:].isdigit(): # Check if it's an NCT number
params = {
"id": query,
"fmt": "json"
}
else:
params = {
"query.term": query,
"fmt": "json",
"email": email
}
return _query_api(API_ENDPOINTS["clinical_trials"], params)
def _get_fda_approval(drug_name: str, api_key:Optional[str] = OPENFDA_KEY) -> Optional[Dict]:
"""Retrieves FDA approval info."""
if not api_key:
st.error("OpenFDA key not configured.")
return None
url = f"{API_ENDPOINTS['fda_drug_approval']}?api_key={api_key}&search=openfda.brand_name:\"{drug_name}\""
data = _query_api(url)
if data and 'results' in data and data['results']:
return data['results'][0]
else:
return None
def _analyze_adverse_events(drug_name: str, api_key:Optional[str] = OPENFDA_KEY, limit: int = 5) -> Optional[Dict]:
"""Fetches and analyzes adverse event reports from FAERS."""
if not api_key:
st.error("OpenFDA key not configured.")
return None
url = f"{API_ENDPOINTS['faers_adverse_events']}?api_key={api_key}&search=patient.drug.medicinalproduct:\"{drug_name}\"&limit={limit}"
data = _query_api(url)
if data and 'results' in data:
return data
else:
return None
def _get_pharmgkb_data(gene:str) -> Optional[Dict]:
"""Fetches pharmacogenomic data from PharmGKB."""
url = API_ENDPOINTS["pharmgkb"].format(gene)
data = _query_api(url)
if data and 'clinicalAnnotations' in data:
return data
else:
return None
def _get_bioportal_data(ontology: str, term: str) -> Optional[Dict]:
"""Fetches data from BioPortal."""
if not BIOPORTAL_API_KEY:
st.error("BioPortal API key not found. Please add the BIOPORTAL_API_KEY to secrets.")
return None
if not term:
st.error("Please provide a search term.")
return None
headers = {
"Authorization": f"apikey token={BIOPORTAL_API_KEY}"
}
params = {
"q": term,
"ontologies": ontology
}
url = f"{API_ENDPOINTS['bioportal']}/search"
try:
response = requests.get(url, headers=headers, params=params, timeout=15)
response.raise_for_status()
data = response.json()
if data and 'collection' in data:
return data
else:
st.warning("No results found for the BioPortal query.")
return None
except requests.exceptions.RequestException as e:
st.error(f"BioPortal API request failed: {e} Please check connectivity and ensure you have the correct API Key.")
logging.error(f"BioPortal API request failed: {e}")
return None
def _save_pdf_report(report_content: str, filename: str):
"""Saves content to a PDF file."""
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, report_content)
pdf.output(filename)
return filename
def _display_dataframe(data: list, columns: list):
"""Displays data in a dataframe format."""
if data:
df = pd.DataFrame(data, columns=columns)
st.dataframe(df)
return df
else:
st.warning("No data found for dataframe creation.")
return None
# --- Streamlit App Configuration ---
st.set_page_config(page_title="Pharma Research Expert Platform", layout="wide")
st.title("🔬 Pharma Research Expert Platform")
st.markdown("An integrated platform for drug discovery, clinical research, and regulatory affairs.")
# --- Tabs ---
tabs = st.tabs(["💊 Drug Development", "📊 Trial Analytics", "🧬 Molecular Profiling", "📜 Regulatory Intelligence", "📚 Literature Search"])
# --- Tab 1: Drug Development ---
with tabs[0]:
st.header("AI-Driven Drug Development Strategy")
target = st.text_input("Target Disease/Pathway:", placeholder="Enter biological target or disease mechanism")
target_gene = st.text_input("Target Gene (for pharmacogenomics)", placeholder="Enter the gene associated with target")
strategy = st.selectbox("Development Strategy:", ["First-in-class", "Me-too", "Repurposing", "Biologic"])
if st.button("Generate Development Plan"):
with st.spinner("Analyzing target and competitive landscape..."):
# AI-generated content with regulatory checks
plan_prompt = f"""Develop a comprehensive drug development plan for the treatment of {target} using a {strategy} strategy.
Include sections on target validation, lead optimization, preclinical testing, clinical trial design, regulatory submission strategy, market analysis, and competitive landscape. Highlight key milestones and potential challenges. """
plan = content_agent.run(plan_prompt)
st.subheader("Comprehensive Development Plan")
st.markdown(plan)
# Regulatory information
if target:
fda_info = _get_fda_approval(target.split()[0]) # Simple name extraction for FDA search
if fda_info:
st.subheader("FDA Regulatory Insights")
st.json(fda_info)
else:
st.write("No relevant FDA data found.")
else:
st.write("Please enter a target to get relevant FDA data")
# Pharmacogenomic integration
st.subheader("Pharmacogenomic Considerations")
pgx_data = _get_pharmgkb_data(target_gene)
if pgx_data:
st.write(pgx_data)
else:
st.write("No relevant pharmacogenomic data found.")
# --- Tab 2: Clinical Trial Analytics ---
with tabs[1]:
st.header("Clinical Trial Landscape Analytics")
trial_query = st.text_input("Search Clinical Trials:", placeholder="Enter condition, intervention, or NCT number")
if st.button("Analyze Trial Landscape"):
with st.spinner("Aggregating global trial data..."):
trials = _get_clinical_trials(trial_query)
if trials and trials['studies']:
st.subheader("Recent Clinical Trials")
trial_data = []
for study in trials['studies'][:5]:
trial_data.append({
"Title": study['briefTitle'],
"Status": study['overallStatus'],
"Phase": study['phase'] if 'phase' in study else 'Not Available',
"Enrollment": study['enrollmentCount'] if 'enrollmentCount' in study else 'Not Available'
})
trial_df = _display_dataframe(trial_data, list(trial_data[0].keys())) if trial_data else None
if trial_df is not None:
st.markdown("### Clinical Trial Summary (First 5 trials)")
st.dataframe(trial_df)
# Adverse events analysis
ae_data = _analyze_adverse_events(trial_query)
if ae_data and ae_data['results']:
st.subheader("Adverse Event Profile (Top 5 Reports)")
ae_results = ae_data['results'][:5]
ae_df = pd.DataFrame(ae_results)
st.dataframe(ae_df)
#Visualization of adverse events
if 'patient' in ae_df and not ae_df.empty:
try:
drug_events = []
for patient in ae_df['patient']:
if isinstance(patient,dict) and 'drug' in patient:
for drug in patient['drug']:
if isinstance(drug,dict) and 'medicinalproduct' in drug and 'reaction' in patient:
reactions = [reaction.get('reactionmeddrapt','') for reaction in patient['reaction']]
for r in reactions:
drug_events.append((drug.get('medicinalproduct', 'N/A'), r))
df_drug_events = pd.DataFrame(drug_events,columns=['Drug', 'Reaction'])
# Aggregate and Visualize top reactions
if not df_drug_events.empty:
top_reactions = df_drug_events['Reaction'].value_counts().nlargest(10)
fig, ax = plt.subplots(figsize=(10,6))
sns.barplot(x=top_reactions.index, y=top_reactions.values, ax=ax)
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right")
plt.title('Top Adverse Reactions')
plt.xlabel('Adverse Reaction')
plt.ylabel('Frequency')
st.pyplot(fig)
#Display as dataframe
st.markdown("### Top 10 Adverse Reaction Summary")
st.dataframe(pd.DataFrame({'Reaction': top_reactions.index, 'Frequency': top_reactions.values}))
except Exception as e:
st.error(f"Error processing adverse events data: {e}")
else:
st.warning("No clinical trials found for the given search term.")
# --- Tab 3: Molecular Profiling ---
with tabs[2]:
st.header("Advanced Molecular Profiling")
compound_input = st.text_input("Compound Identifier:",
placeholder="Enter drug name, SMILES, or INN")
if st.button("Analyze Compound"):
with st.spinner("Querying global databases..."):
# SMILES resolution
smiles = compound_input if Chem.MolFromSmiles(compound_input) else _get_pubchem_smiles(compound_input)
if smiles:
img = _draw_molecule(smiles)
if img:
st.image(img, caption="2D Structure")
else:
st.error("Compound structure not found in databases.")
# PubChem properties
pubchem_data = _query_api(API_ENDPOINTS["pubchem"].format(compound_input))
if pubchem_data and 'PC_Compounds' in pubchem_data and pubchem_data['PC_Compounds']:
st.subheader("Physicochemical Properties")
props = pubchem_data['PC_Compounds'][0]['props']
mw = next((prop['value']['sval'] for prop in props if 'name' in prop and prop['name'] == 'Molecular Weight'), 'N/A')
logp = next((prop['value']['sval'] for prop in props if 'name' in prop and prop['name'] == 'LogP'), 'N/A')
st.write(f"""
Molecular Weight: {mw}
LogP: {logp}
""")
else:
st.error("Physicochemical properties not found.")
# --- Tab 4: Regulatory Intelligence ---
with tabs[3]:
st.header("Global Regulatory Monitoring")
drug_name = st.text_input("Drug Product:", placeholder="Enter generic or brand name")
if st.button("Generate Regulatory Report"):
with st.spinner("Compiling global regulatory status..."):
# Multi-regional checks
fda = _get_fda_approval(drug_name)
# ema = _query_api(API_ENDPOINTS["ema_reports"], {"search": drug_name}) #Removed EMA due to 403 error
who = _query_api(API_ENDPOINTS["who_drugs"], {"name": drug_name})
st.subheader("Regulatory Status")
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("**FDA Status**")
st.write(fda['openfda']['brand_name'][0] if fda and 'openfda' in fda and 'brand_name' in fda['openfda'] else "Not approved")
with col2:
st.markdown("**EMA Status**")
#st.write(ema['results'][0]['currentStatus'] if ema and 'results' in ema and ema['results'] else "Not approved") #Removed EMA due to 403 error
st.write("Not Available")
with col3:
st.markdown("**WHO Essential Medicine**")
st.write("Yes" if who else "No")
# Save the information to a PDF report
regulatory_content = f"### Regulatory Report\n\nFDA Status: {fda['openfda']['brand_name'][0] if fda and 'openfda' in fda and 'brand_name' in fda['openfda'] else 'Not Approved'}\n\nEMA Status: {'Not Available'}\n\nWHO Essential Medicine: {'Yes' if who else 'No'}"
report_file = _save_pdf_report(regulatory_content, f"{drug_name}_regulatory_report.pdf")
if report_file:
with open(report_file, "rb") as file:
st.download_button(
label="Download Regulatory Report (PDF)",
data=file,
file_name=f"{drug_name}_regulatory_report.pdf",
mime="application/pdf")
# --- Tab 5: Literature Search ---
with tabs[4]:
st.header("Literature Search")
search_term = st.text_input("Enter search query for PubMed:", placeholder="e.g., Alzheimer's disease genetics")
if st.button("Search PubMed"):
with st.spinner("Searching PubMed..."):
pubmed_data = _query_pubmed(search_term)
if pubmed_data and 'esearchresult' in pubmed_data and 'idlist' in pubmed_data['esearchresult'] and pubmed_data['esearchresult']['idlist']:
st.subheader("PubMed Search Results")
st.write(f"Found {len(pubmed_data['esearchresult']['idlist'])} results for '{search_term}':")
for article_id in pubmed_data['esearchresult']['idlist']:
st.write(f"- PMID: {article_id}")
else:
st.write("No results found for that term.")
st.header("Ontology Search")
ontology_search_term = st.text_input("Enter Search query for Ontology:", placeholder="Enter disease or ontology")
ontology_select = st.selectbox("Select Ontology", ["MESH","NCIT","GO", "SNOMEDCT"])
if st.button("Search BioPortal"):
with st.spinner("Searching Ontology..."):
bioportal_data = _get_bioportal_data(ontology_select, ontology_search_term)
if bioportal_data and 'collection' in bioportal_data:
st.subheader(f"BioPortal Search Results for {ontology_select}")
for result in bioportal_data['collection']:
st.write(f"- {result['prefLabel']} ({result['@id']})")
else:
st.write("No results found")