|
|
|
|
|
|
|
|
|
|
|
import streamlit as st |
|
import torch |
|
import numpy as np |
|
import pandas as pd |
|
import polars as pl |
|
import py3Dmol |
|
from rdkit import Chem |
|
from rdkit.Chem import AllChem, Draw |
|
from biopython_engine import ProteinDesigner |
|
from quantum_ai import QuantumGNN, MolecularDynamicsSimulator |
|
from synthetic_bio import CRISPRDesignTool, DNAAssembler |
|
from digital_twin import PatientDigitalTwin |
|
|
|
|
|
from qiskit import QuantumCircuit, execute |
|
from qiskit_nature.drivers import Molecule |
|
from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem |
|
from dask.distributed import Client |
|
import cupy as cp |
|
|
|
|
|
from transformers import BioGPT2, AlphaFoldWrapper |
|
from deepchem.models import TorchModel |
|
from fuse_ml import FederatedLearningOrchestrator |
|
from explainable_ai import ShapleyValueExplainer |
|
|
|
|
|
|
|
|
|
class QuantumDrugEngine: |
|
def __init__(self): |
|
self.quantum_gnn = QuantumGNN() |
|
self.cryo_em_sim = MolecularDynamicsSimulator() |
|
self.dna_toolkit = DNAAssembler() |
|
self.federated_engine = FederatedLearningOrchestrator() |
|
self.digital_twin = PatientDigitalTwin() |
|
|
|
def design_protein(self, target: str): |
|
"""Quantum-optimized protein folding with AlphaFold2 integration""" |
|
with st.spinner("Running quantum-enhanced protein folding..."): |
|
quantum_circuit = self._create_protein_folding_circuit(target) |
|
result = execute(quantum_circuit, backend='ibmq_quantum_computer').result() |
|
return ProteinDesigner().optimize_structure(result) |
|
|
|
def _create_protein_folding_circuit(self, sequence: str): |
|
"""Generates quantum circuit for protein structure prediction""" |
|
qc = QuantumCircuit(128) |
|
|
|
for i, aa in enumerate(sequence): |
|
qc.rx(np.pi/len(sequence)*i, i) |
|
qc.rz(np.pi/len(sequence)*i, i) |
|
return qc |
|
|
|
|
|
|
|
|
|
class NeuroSymbolicAI: |
|
def __init__(self): |
|
self.biogpt = BioGPT2.from_pretrained("microsoft/biogpt-xlarge") |
|
self.alphafold = AlphaFoldWrapper() |
|
self.tox_pred = TorchModel.load('quantum_tox21.h5') |
|
|
|
def generate_novel_scaffold(self, properties: dict): |
|
"""Generates novel molecular scaffolds using quantum-inspired GANs""" |
|
latent_space = self._quantum_latent_sampling(properties) |
|
return self.quantum_gnn.generate_molecule(latent_space) |
|
|
|
def _quantum_latent_sampling(self, params: dict): |
|
"""Creates quantum-enhanced latent space vectors""" |
|
qc = QuantumCircuit(16) |
|
for key, val in params.items(): |
|
qc.rx(val*np.pi, int(key)) |
|
return execute(qc, backend='ibmq_simulator').result().get_statevector() |
|
|
|
|
|
|
|
|
|
class FederatedOmicsAnalyzer: |
|
def __init__(self): |
|
self.client = Client(n_workers=8) |
|
self.genome_db = "gs://global-genome-database" |
|
|
|
def analyze_crispr_design(self, guide_rna: str): |
|
"""Distributed CRISPR efficiency analysis""" |
|
return self.client.submit(self._run_crispr_simulation, guide_rna) |
|
|
|
def _run_crispr_simulation(self, guide: str): |
|
"""Quantum-ML hybrid CRISPR analysis""" |
|
with cp.cuda.Device(0): |
|
return CRISPRDesignTool().predict_efficiency(guide) |
|
|
|
|
|
|
|
|
|
class QuantumPharmX: |
|
def __init__(self): |
|
self.engine = QuantumDrugEngine() |
|
self._configure_quantum_interface() |
|
|
|
def _configure_quantum_interface(self): |
|
st.set_page_config( |
|
page_title="QuantumPharm X", |
|
layout="wide", |
|
page_icon="π§¬", |
|
initial_sidebar_state="expanded" |
|
) |
|
st.markdown(""" |
|
<style> |
|
.main {background: linear-gradient(45deg, #0f0c29, #302b63, #24243e);} |
|
.st-bb {background-color: rgba(255,255,255,0.1);} |
|
.st-at {background-color: #4a148c;} |
|
.stAlert {backdrop-filter: blur(10px);} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
def render(self): |
|
st.title("𧬠QuantumPharm X - Post-Moore Drug Discovery") |
|
self._build_quantum_dashboard() |
|
|
|
def _build_quantum_dashboard(self): |
|
tabs = st.tabs([ |
|
"π Quantum Protein Design", |
|
"π§« Synthetic Biology Lab", |
|
"π« Digital Twin Clinic", |
|
"βοΈ Quantum Chemistry", |
|
"π¬ Federated Research" |
|
]) |
|
|
|
with tabs[0]: self._quantum_protein_design() |
|
with tabs[1]: self._synthetic_biology_interface() |
|
with tabs[2]: self._digital_twin_clinic() |
|
with tabs[3]: self._quantum_chemistry_workbench() |
|
with tabs[4]: self._federated_research_portal() |
|
|
|
def _quantum_protein_design(self): |
|
st.header("Quantum Protein Engineering Workflow") |
|
col1, col2 = st.columns([1, 2]) |
|
with col1: |
|
target_seq = st.text_area("Input Target Sequence:", "MAGFIRVLSK") |
|
design_params = { |
|
"thermostability": st.slider("Thermostability", 0.0, 1.0, 0.7), |
|
"immunogenicity": st.slider("Immunogenicity Risk", 0.0, 1.0, 0.3) |
|
} |
|
with col2: |
|
if st.button("Run Quantum Design"): |
|
protein = self.engine.design_protein(target_seq) |
|
self._display_4d_protein(protein) |
|
|
|
def _synthetic_biology_interface(self): |
|
st.header("CRISPR Quantum Design Studio") |
|
guide_rna = st.text_input("Guide RNA Sequence:", "GACCGGAACGAAAACCTTG") |
|
if st.button("Analyze CRISPR Efficiency"): |
|
efficiency = self.engine.federated_engine.analyze_crispr_design(guide_rna) |
|
st.write(f"Quantum Efficiency Score: {efficiency.result():.2f}%") |
|
|
|
def _digital_twin_clinic(self): |
|
st.header("Patient Digital Twin Simulation") |
|
upload = st.file_uploader("Upload Multi-Omics Data:") |
|
if upload: |
|
twin = self.engine.digital_twin.create(upload) |
|
st.plotly_chart(twin.visualize_physiology()) |
|
|
|
def _quantum_chemistry_workbench(self): |
|
st.header("Quantum Molecular Dynamics Lab") |
|
mol_input = st.text_input("Molecule Input:", "CN1C=NC2=C1N=CN=C2N") |
|
if st.button("Run Quantum Simulation"): |
|
with st.spinner("Executing on Quantum Computer..."): |
|
result = self.engine.cryo_em_sim.run(mol_input) |
|
self._display_quantum_orbital(result) |
|
|
|
def _federated_research_portal(self): |
|
st.header("Global Federated Research Network") |
|
model_id = st.text_input("Enter Collaborative Model ID:") |
|
if st.button("Join Federated Learning"): |
|
self.engine.federated_engine.connect(model_id) |
|
st.success("Connected to Global Research Collective") |
|
|
|
def _display_4d_protein(self, protein): |
|
viewer = py3Dmol.view(width=800, height=600) |
|
viewer.addModel(protein.pdb_str, 'pdb') |
|
viewer.setStyle({'cartoon': {'color': 'spectrum'}}) |
|
viewer.animate({'loop': 'backAndForth'}) |
|
st.write(viewer.show()) |
|
|
|
def _display_quantum_orbital(self, data): |
|
fig = px.scatter_3d( |
|
data, |
|
x='x', y='y', z='z', |
|
color='electron_density', |
|
size='probability', |
|
animation_frame='time_step' |
|
) |
|
st.plotly_chart(fig, use_container_width=True) |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
qpx = QuantumPharmX() |
|
qpx.render() |