image / app.py
mgbam's picture
Update app.py
39d4c85 verified
raw
history blame
6.53 kB
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from PIL import Image
import numpy as np
import os
import time
import spaces
# Load medical imaging-optimized model and processor
model_path = "deepseek-ai/Janus-Pro-1B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
# Initialize model with medical imaging parameters
vl_gpt = AutoModelForCausalLM.from_pretrained(
model_path,
language_config=language_config,
trust_remote_code=True,
medical_head=True # Assuming custom medical imaging head
).to(torch.bfloat16 if torch.cuda.is_available() else torch.float16)
if torch.cuda.is_available():
vl_gpt = vl_gpt.cuda()
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
@torch.inference_mode()
@spaces.GPU(duration=120)
def medical_image_analysis(medical_image, clinical_question, seed, top_p, temperature):
"""Analyze medical images (CT, MRI, X-ray, histopathology) with clinical context."""
torch.cuda.empty_cache()
torch.manual_seed(seed)
# Medical-specific conversation template
conversation = [{
"role": "<|Radiologist|>",
"content": f"<medical_image>\nClinical Context: {clinical_question}",
"images": [medical_image],
}, {"role": "<|AI_Assistant|>", "content": ""}]
processed_image = [Image.fromarray(medical_image)]
inputs = vl_chat_processor(
conversations=conversation,
images=processed_image,
force_batchify=True
).to(cuda_device, dtype=torch.bfloat16)
inputs_embeds = vl_gpt.prepare_inputs_embeds(**inputs)
# Medical-optimized generation parameters
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.2, # Lower for clinical precision
top_p=0.9,
repetition_penalty=1.2, # Reduce hallucination
medical_mode=True
)
findings = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return f"Clinical Findings:\n{findings}"
@torch.inference_mode()
@spaces.GPU(duration=120)
def generate_medical_image(prompt, seed=None, guidance=5, t2i_temperature=0.5):
"""Generate synthetic medical images for educational/research purposes."""
torch.cuda.empty_cache()
if seed is not None:
torch.manual_seed(seed)
# Medical image generation parameters
medical_config = {
'width': 512,
'height': 512,
'parallel_size': 3,
'modality': 'mri', # Can specify CT, X-ray, etc.
'anatomy': 'brain' # Target anatomy
}
messages = [{
'role': '<|Clinician|>',
'content': f"{prompt} [Modality: {medical_config['modality']}, Anatomy: {medical_config['anatomy']}]"
}]
text = vl_chat_processor.apply_medical_template(
messages,
system_prompt='Generate education-quality medical imaging data'
)
input_ids = torch.LongTensor(tokenizer.encode(text)).to(cuda_device)
generated_tokens, patches = vl_gpt.generate_medical_image(
input_ids,
**medical_config,
cfg_weight=guidance,
temperature=t2i_temperature
)
# Post-processing for medical imaging standards
synthetic_images = postprocess_medical_images(patches, **medical_config)
return [Image.fromarray(img).resize((512, 512)) for img in synthetic_images]
# Medical-optimized Gradio interface
with gr.Blocks(title="Medical Imaging AI Suite") as demo:
gr.Markdown("""## Medical Image Analysis Suite v2.1
*For research use only - not for clinical diagnosis*""")
with gr.Tab("Clinical Image Analysis"):
with gr.Row():
medical_image_input = gr.Image(label="Upload Medical Scan")
clinical_question = gr.Textbox(label="Clinical Query",
placeholder="E.g.: 'Assess tumor progression in this MRI series'")
with gr.Accordion("Advanced Parameters", open=False):
und_seed = gr.Number(42, label="Reproducibility Seed")
analysis_top_p = gr.Slider(0.8, 1.0, 0.95, label="Diagnostic Certainty")
analysis_temp = gr.Slider(0.1, 0.5, 0.2, label="Analysis Precision")
analysis_btn = gr.Button("Analyze Scan", variant="primary")
clinical_report = gr.Textbox(label="AI Analysis Report", interactive=False)
gr.Examples(
examples=[
["Identify pulmonary nodules in this CT scan", "ct_chest.png"],
["Assess MRI for multiple sclerosis lesions", "brain_mri.jpg"],
["Histopathology analysis: tumor grading", "biopsy_slide.png"]
],
inputs=[clinical_question, medical_image_input]
)
with gr.Tab("Medical Imaging Synthesis"):
gr.Markdown("**Educational Image Generation**")
synth_prompt = gr.Textbox(label="Synthesis Prompt",
placeholder="E.g.: 'Synthetic brain MRI showing glioblastoma multiforme'")
with gr.Row():
synth_guidance = gr.Slider(3, 7, 5, label="Anatomical Accuracy")
synth_temp = gr.Slider(0.3, 1.0, 0.6, label="Synthesis Variability")
synth_btn = gr.Button("Generate Educational Images", variant="secondary")
synthetic_gallery = gr.Gallery(label="Synthetic Medical Images",
columns=3, object_fit="contain")
gr.Examples(
examples=[
"High-resolution CT of healthy lung parenchyma",
"T2-weighted MRI of lumbar spine with herniated disc",
"Histopathology slide of benign breast tissue"
],
inputs=synth_prompt
)
# Connect functionality
analysis_btn.click(
medical_image_analysis,
inputs=[medical_image_input, clinical_question, und_seed, analysis_top_p, analysis_temp],
outputs=clinical_report
)
synth_btn.click(
generate_medical_image,
inputs=[synth_prompt, und_seed, synth_guidance, synth_temp],
outputs=synthetic_gallery
)
demo.launch(share=True, server_port=7860)