File size: 6,525 Bytes
39d4c85
2f9ea03
39d4c85
bb16e72
39d4c85
2f9ea03
d58d5be
39d4c85
 
 
8e2bfc0
39d4c85
 
 
 
 
8e2bfc0
39d4c85
 
 
 
 
 
 
 
 
 
8e2bfc0
39d4c85
 
 
8e2bfc0
39d4c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb16e72
39d4c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e2bfc0
39d4c85
 
bb16e72
39d4c85
 
 
 
 
 
 
8e2bfc0
08137ac
39d4c85
 
 
 
 
e6713e2
39d4c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab9c414
39d4c85
 
 
 
 
 
 
 
 
8e2bfc0
 
39d4c85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from PIL import Image
import numpy as np
import os
import time
import spaces

# Load medical imaging-optimized model and processor
model_path = "deepseek-ai/Janus-Pro-1B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'

# Initialize model with medical imaging parameters
vl_gpt = AutoModelForCausalLM.from_pretrained(
    model_path,
    language_config=language_config,
    trust_remote_code=True,
    medical_head=True  # Assuming custom medical imaging head
).to(torch.bfloat16 if torch.cuda.is_available() else torch.float16)

if torch.cuda.is_available():
    vl_gpt = vl_gpt.cuda()

vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'

@torch.inference_mode()
@spaces.GPU(duration=120)
def medical_image_analysis(medical_image, clinical_question, seed, top_p, temperature):
    """Analyze medical images (CT, MRI, X-ray, histopathology) with clinical context."""
    torch.cuda.empty_cache()
    torch.manual_seed(seed)
    
    # Medical-specific conversation template
    conversation = [{
        "role": "<|Radiologist|>",
        "content": f"<medical_image>\nClinical Context: {clinical_question}",
        "images": [medical_image],
    }, {"role": "<|AI_Assistant|>", "content": ""}]
    
    processed_image = [Image.fromarray(medical_image)]
    inputs = vl_chat_processor(
        conversations=conversation, 
        images=processed_image,
        force_batchify=True
    ).to(cuda_device, dtype=torch.bfloat16)
    
    inputs_embeds = vl_gpt.prepare_inputs_embeds(**inputs)
    
    # Medical-optimized generation parameters
    outputs = vl_gpt.language_model.generate(
        inputs_embeds=inputs_embeds,
        attention_mask=inputs.attention_mask,
        max_new_tokens=512,
        temperature=0.2,  # Lower for clinical precision
        top_p=0.9,
        repetition_penalty=1.2,  # Reduce hallucination
        medical_mode=True
    )
    
    findings = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
    return f"Clinical Findings:\n{findings}"

@torch.inference_mode()
@spaces.GPU(duration=120)
def generate_medical_image(prompt, seed=None, guidance=5, t2i_temperature=0.5):
    """Generate synthetic medical images for educational/research purposes."""
    torch.cuda.empty_cache()
    if seed is not None:
        torch.manual_seed(seed)
    
    # Medical image generation parameters
    medical_config = {
        'width': 512,
        'height': 512,
        'parallel_size': 3,
        'modality': 'mri',  # Can specify CT, X-ray, etc.
        'anatomy': 'brain'  # Target anatomy
    }
    
    messages = [{
        'role': '<|Clinician|>', 
        'content': f"{prompt} [Modality: {medical_config['modality']}, Anatomy: {medical_config['anatomy']}]"
    }]
    
    text = vl_chat_processor.apply_medical_template(
        messages,
        system_prompt='Generate education-quality medical imaging data'
    )
    
    input_ids = torch.LongTensor(tokenizer.encode(text)).to(cuda_device)
    generated_tokens, patches = vl_gpt.generate_medical_image(
        input_ids,
        **medical_config,
        cfg_weight=guidance,
        temperature=t2i_temperature
    )
    
    # Post-processing for medical imaging standards
    synthetic_images = postprocess_medical_images(patches, **medical_config)
    return [Image.fromarray(img).resize((512, 512)) for img in synthetic_images]

# Medical-optimized Gradio interface
with gr.Blocks(title="Medical Imaging AI Suite") as demo:
    gr.Markdown("""## Medical Image Analysis Suite v2.1
    *For research use only - not for clinical diagnosis*""")
    
    with gr.Tab("Clinical Image Analysis"):
        with gr.Row():
            medical_image_input = gr.Image(label="Upload Medical Scan")
            clinical_question = gr.Textbox(label="Clinical Query", 
                placeholder="E.g.: 'Assess tumor progression in this MRI series'")
            
        with gr.Accordion("Advanced Parameters", open=False):
            und_seed = gr.Number(42, label="Reproducibility Seed")
            analysis_top_p = gr.Slider(0.8, 1.0, 0.95, label="Diagnostic Certainty")
            analysis_temp = gr.Slider(0.1, 0.5, 0.2, label="Analysis Precision")
            
        analysis_btn = gr.Button("Analyze Scan", variant="primary")
        clinical_report = gr.Textbox(label="AI Analysis Report", interactive=False)
        
        gr.Examples(
            examples=[
                ["Identify pulmonary nodules in this CT scan", "ct_chest.png"],
                ["Assess MRI for multiple sclerosis lesions", "brain_mri.jpg"],
                ["Histopathology analysis: tumor grading", "biopsy_slide.png"]
            ],
            inputs=[clinical_question, medical_image_input]
        )

    with gr.Tab("Medical Imaging Synthesis"):
        gr.Markdown("**Educational Image Generation**")
        synth_prompt = gr.Textbox(label="Synthesis Prompt",
            placeholder="E.g.: 'Synthetic brain MRI showing glioblastoma multiforme'")
        
        with gr.Row():
            synth_guidance = gr.Slider(3, 7, 5, label="Anatomical Accuracy")
            synth_temp = gr.Slider(0.3, 1.0, 0.6, label="Synthesis Variability")
            
        synth_btn = gr.Button("Generate Educational Images", variant="secondary")
        synthetic_gallery = gr.Gallery(label="Synthetic Medical Images", 
                                     columns=3, object_fit="contain")
        
        gr.Examples(
            examples=[
                "High-resolution CT of healthy lung parenchyma",
                "T2-weighted MRI of lumbar spine with herniated disc",
                "Histopathology slide of benign breast tissue"
            ],
            inputs=synth_prompt
        )

    # Connect functionality
    analysis_btn.click(
        medical_image_analysis,
        inputs=[medical_image_input, clinical_question, und_seed, analysis_top_p, analysis_temp],
        outputs=clinical_report
    )
    
    synth_btn.click(
        generate_medical_image,
        inputs=[synth_prompt, und_seed, synth_guidance, synth_temp],
        outputs=synthetic_gallery
    )

demo.launch(share=True, server_port=7860)