Spaces:
Runtime error
Runtime error
import sys | |
sys.path.append('./LLAUS') | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig | |
import torch | |
from llava import LlavaLlamaForCausalLM | |
from llava.conversation import conv_templates | |
from llava.utils import disable_torch_init | |
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria | |
from PIL import Image | |
from torch.cuda.amp import autocast | |
import gradio as gr | |
import spaces | |
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model | |
import os | |
from transformers import AutoProcessor, AutoModel | |
import torch.nn.functional as F | |
#--------------------------------- | |
#++++++++ Model ++++++++++ | |
#--------------------------------- | |
DEFAULT_IMAGE_TOKEN = "<image>" | |
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
DEFAULT_IM_START_TOKEN = "<im_start>" | |
DEFAULT_IM_END_TOKEN = "<im_end>" | |
def patch_config(config_path): | |
"""Applies necessary patches to the model config.""" | |
patch_dict = { | |
"use_mm_proj": True, | |
"mm_vision_tower": "openai/clip-vit-large-patch14", | |
"mm_hidden_size": 1024 | |
} | |
cfg = AutoConfig.from_pretrained(config_path) | |
if not hasattr(cfg, "mm_vision_tower"): | |
print(f'`mm_vision_tower` not found in `{config_path}`, applying patch and save to disk.') | |
for k, v in patch_dict.items(): | |
setattr(cfg, k, v) | |
cfg.save_pretrained(config_path) | |
def load_llava_model(): | |
"""Loads and initializes the LLaVA model.""" | |
model_name = "Baron-GG/LLaVA-Med" # Change this to your model if you uploaded a new one | |
disable_torch_init() | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
patch_config(model_name) | |
model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).cuda() | |
model.model.requires_grad_(False) | |
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16) | |
model.config.use_cache = False | |
model.config.tune_mm_mlp_adapter = False | |
model.config.freeze_mm_mlp_adapter = False | |
model.config.mm_use_im_start_end = True | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
vision_tower = model.model.vision_tower[0] | |
vision_tower.to(device='cuda', dtype=torch.float16) | |
vision_config = vision_tower.config | |
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] | |
vision_config.use_im_start_end = mm_use_im_start_end | |
if mm_use_im_start_end: | |
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) | |
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2 | |
model = prepare_model_for_int8_training(model) | |
lora_config = LoraConfig( | |
r=64, | |
lora_alpha=16, | |
target_modules=["q_proj", "v_proj","k_proj","o_proj"], | |
lora_dropout=0.05, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
model = get_peft_model(model, lora_config).cuda() | |
model.eval() | |
return model, tokenizer, image_processor, image_token_len, mm_use_im_start_end | |
def load_biomedclip_model(): | |
"""Loads the BiomedCLIP model and tokenizer.""" | |
biomedclip_model_name = 'microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224' | |
processor = AutoProcessor.from_pretrained(biomedclip_model_name) | |
model = AutoModel.from_pretrained(biomedclip_model_name).cuda().eval() | |
return model, processor | |
class KeywordsStoppingCriteria(StoppingCriteria): | |
"""Custom stopping criteria for generation.""" | |
def __init__(self, keywords, tokenizer, input_ids): | |
self.keywords = keywords | |
self.tokenizer = tokenizer | |
self.start_len = None | |
self.input_ids = input_ids | |
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
if self.start_len is None: | |
self.start_len = self.input_ids.shape[1] | |
else: | |
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0] | |
for keyword in self.keywords: | |
if keyword in outputs: | |
return True | |
return False | |
def compute_similarity(image, text, biomedclip_model, biomedclip_processor): | |
"""Computes similarity scores using BiomedCLIP.""" | |
with torch.no_grad(): | |
inputs = biomedclip_processor(text=text, images=image, return_tensors="pt", padding=True).to(biomedclip_model.device) | |
outputs = biomedclip_model(**inputs) | |
image_embeds = outputs.image_embeds | |
text_embeds = outputs.text_embeds | |
image_embeds = F.normalize(image_embeds, dim=-1) | |
text_embeds = F.normalize(text_embeds, dim=-1) | |
similarity = (text_embeds @ image_embeds.transpose(-1, -2)).squeeze() | |
return similarity | |
def eval_llava_model(llava_model, llava_tokenizer, llava_image_processor, image, question, image_token_len, mm_use_im_start_end, max_new_tokens, temperature): | |
"""Evaluates the LLaVA model for a given image and question.""" | |
image_list = [] | |
image_tensor = llava_image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] # 3, 224, 224 | |
image_list.append(image_tensor) | |
image_idx = 1 | |
if mm_use_im_start_end: | |
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len * image_idx + DEFAULT_IM_END_TOKEN + question | |
else: | |
qs = DEFAULT_IMAGE_PATCH_TOKEN * image_token_len * image_idx + '\n' + question | |
conv = conv_templates["simple"].copy() | |
conv.append_message(conv.roles[0], qs) | |
prompt = conv.get_prompt() | |
inputs = llava_tokenizer([prompt]) | |
image_tensor = torch.stack(image_list, dim=0).half().cuda() | |
input_ids = torch.as_tensor(inputs.input_ids).cuda() | |
keywords = ['###'] | |
stopping_criteria = KeywordsStoppingCriteria(keywords, llava_tokenizer, input_ids) | |
with autocast(): | |
output_ids = llava_model.generate( | |
input_ids=input_ids, | |
images=image_tensor, | |
do_sample=True, | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
stopping_criteria=[stopping_criteria] | |
) | |
input_token_len = input_ids.shape[1] | |
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() | |
if n_diff_input_output > 0: | |
print(f'[Warning] Sample: {n_diff_input_output} output_ids are not the same as the input_ids') | |
outputs = llava_tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] | |
while True: | |
cur_len = len(outputs) | |
outputs = outputs.strip() | |
for pattern in ['###', 'Assistant:', 'Response:']: | |
if outputs.startswith(pattern): | |
outputs = outputs[len(pattern):].strip() | |
if len(outputs) == cur_len: | |
break | |
try: | |
index = outputs.index(conv.sep) | |
except ValueError: | |
outputs += conv.sep | |
index = outputs.index(conv.sep) | |
outputs = outputs[:index].strip() | |
print(outputs) | |
return outputs | |
#--------------------------------- | |
#++++++++ Gradio ++++++++++ | |
#--------------------------------- | |
SHARED_UI_WARNING = f'''### [NOTE] It is possible that you are waiting in a lengthy queue. | |
You can duplicate and use it with a paid private GPU. | |
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/Vision-CAIR/minigpt4?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a> | |
Alternatively, you can also use the demo on our [project page](https://minigpt-4.github.io). | |
''' | |
def gradio_reset(chat_state, img_list): | |
"""Resets the chat state and image list.""" | |
if chat_state is not None: | |
chat_state.messages = [] | |
if img_list is not None: | |
img_list = [] | |
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your medical image first', interactive=False), gr.update(value="Upload & Start Analysis", interactive=True), chat_state, img_list | |
def upload_img(gr_img, text_input, chat_state): | |
"""Handles image upload.""" | |
if gr_img is None: | |
return None, None, gr.update(interactive=True), chat_state, None | |
img_list = [gr_img] | |
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Analysis", interactive=False), chat_state, img_list | |
def gradio_ask(user_message, chatbot, chat_state): | |
"""Handles user input.""" | |
if not user_message: | |
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state | |
chatbot = chatbot + [[user_message, None]] | |
return '', chatbot, chat_state | |
def gradio_answer(chatbot, chat_state, img_list, llava_model, llava_tokenizer, llava_image_processor, image_token_len, mm_use_im_start_end, max_new_token, temperature, biomedclip_model, biomedclip_processor): | |
"""Generates and adds the bot's response to the chatbot using LLaVA""" | |
if not img_list: | |
return chatbot, chat_state, img_list | |
# compute similarity using biomedclip | |
similarity_score = compute_similarity(img_list[0],chatbot[-1][0], biomedclip_model, biomedclip_processor) | |
print(f'Similarity Score is: {similarity_score}') | |
# prepare the input for LLAVA | |
llava_input_text = f"Based on the image and query provided the similarity score is {similarity_score:.3f}. " + chatbot[-1][0] | |
llm_message = eval_llava_model(llava_model, llava_tokenizer, llava_image_processor, img_list[0], llava_input_text, image_token_len, mm_use_im_start_end, max_new_token, temperature) | |
chatbot[-1][1] = llm_message | |
return chatbot, chat_state, img_list | |
title = """<h1 align="center">Medical Image Analysis Tool</h1>""" | |
description = """<h3>Upload medical images, ask questions, and receive analysis.</h3>""" | |
examples_list=[ | |
["./case1.png", "Analyze the X-ray for any abnormalities."], | |
["./case2.jpg", "What type of disease may be present?"], | |
["./case1.png","What is the anatomical structure shown here?"] | |
] | |
# Load models and related resources outside of the Gradio block for loading on startup | |
llava_model, llava_tokenizer, llava_image_processor, image_token_len, mm_use_im_start_end = load_llava_model() | |
biomedclip_model, biomedclip_processor = load_biomedclip_model() | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
# gr.Markdown(SHARED_UI_WARNING) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=0.5): | |
image = gr.Image(type="pil", label="Medical Image") | |
upload_button = gr.Button(value="Upload & Start Analysis", interactive=True, variant="primary") | |
clear = gr.Button("Restart") | |
max_new_token = gr.Slider( | |
minimum=1, | |
maximum=512, | |
value=128, | |
step=1, | |
interactive=True, | |
label="Max new tokens" | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=0.3, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
with gr.Column(): | |
chat_state = gr.State() | |
img_list = gr.State() | |
chatbot = gr.Chatbot(label='Medical Analysis') | |
text_input = gr.Textbox(label='Analysis Query', placeholder='Please upload your medical image first', interactive=False) | |
gr.Examples(examples=examples_list, inputs=[image, text_input]) | |
upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list]) | |
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then( | |
gradio_answer, [chatbot, chat_state, img_list, llava_model, llava_tokenizer, llava_image_processor, image_token_len, mm_use_im_start_end, max_new_token, temperature, biomedclip_model, biomedclip_processor], [chatbot, chat_state, img_list] | |
) | |
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False) | |
demo.launch() |