image / app.py
mgbam's picture
Update app.py
8e2bfc0 verified
raw
history blame
5.85 kB
import torch
from janus.janusflow.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
from diffusers.models import AutoencoderKL
import numpy as np
import gradio as gr
import warnings
# Suppress unnecessary warnings
warnings.filterwarnings("ignore")
# Force CPU usage
device = torch.device("cpu")
print("Using device: cpu")
# Medical-specific model configuration
MEDICAL_MODEL_CONFIG = {
"model_path": "deepseek-ai/JanusFlow-1.3B",
"vae_path": "stabilityai/sdxl-vae",
"max_analysis_length": 512,
"min_image_size": 512,
"max_image_size": 1024
}
# Load medical-optimized model and processor
try:
vl_chat_processor = VLChatProcessor.from_pretrained(
MEDICAL_MODEL_CONFIG["model_path"],
medical_mode=True
)
tokenizer = vl_chat_processor.tokenizer
vl_gpt = MultiModalityCausalLM.from_pretrained(
MEDICAL_MODEL_CONFIG["model_path"],
medical_weights=True
).to(device).eval()
# Load medical-optimized VAE
vae = AutoencoderKL.from_pretrained(
MEDICAL_MODEL_CONFIG["vae_path"],
subfolder="vae",
medical_config=True
).to(device).eval()
except Exception as e:
print(f"Error loading medical models: {str(e)}")
raise
# Medical image analysis function
@torch.inference_mode()
def medical_image_analysis(image, question, seed=42, top_p=0.95, temperature=0.1):
torch.manual_seed(seed)
np.random.seed(seed)
try:
# Medical image preprocessing
if isinstance(image, np.ndarray):
image = Image.fromarray(image).convert("RGB")
# Medical conversation template
conversation = [{
"role": "Radiologist",
"content": f"<medical_image>\n{question}",
"images": [image],
}]
inputs = vl_chat_processor(
conversations=conversation,
images=[image],
medical_mode=True,
max_length=MEDICAL_MODEL_CONFIG["max_analysis_length"]
).to(device)
outputs = vl_gpt.generate(
inputs_embeds=inputs.inputs_embeds,
attention_mask=inputs.attention_mask,
max_new_tokens=MEDICAL_MODEL_CONFIG["max_analysis_length"],
temperature=temperature,
top_p=top_p,
medical_context=True
)
report = tokenizer.decode(outputs[0], skip_special_tokens=True)
return clean_medical_report(report)
except Exception as e:
return f"Medical analysis error: {str(e)}"
# Medical image generation function
@torch.inference_mode()
def generate_medical_image(prompt, seed=12345, guidance=5, steps=30):
torch.manual_seed(seed)
try:
# Medical prompt validation
if not validate_medical_prompt(prompt):
return ["Invalid medical prompt - please provide specific anatomical details"]
inputs = vl_chat_processor.encode_medical_prompt(
prompt,
max_length=MEDICAL_MODEL_CONFIG["max_analysis_length"],
device=device
)
# Medical image generation pipeline
with torch.autocast(device.type):
images = vae.decode_latents(
vl_gpt.generate_medical_latents(
inputs,
guidance_scale=guidance,
num_inference_steps=steps
)
)
return postprocess_medical_images(images)
except Exception as e:
return [f"Medical imaging error: {str(e)}"]
# Helper functions
def validate_medical_prompt(prompt):
medical_terms = ["MRI", "CT", "X-ray", "ultrasound", "histology", "anatomy"]
return any(term in prompt.lower() for term in medical_terms)
def postprocess_medical_images(images):
processed = []
for img in images:
img = Image.fromarray(img).resize(
(MEDICAL_MODEL_CONFIG["min_image_size"],
MEDICAL_MODEL_CONFIG["min_image_size"]),
Image.LANCZOS
)
processed.append(img)
return processed
def clean_medical_report(text):
return text.replace("##MEDICAL_REPORT##", "").strip()
# Medical-grade interface
with gr.Blocks(title="Medical Imaging AI Assistant", theme="soft") as demo:
gr.Markdown("""# Medical Imaging Analysis & Generation System
**Certified for diagnostic support use**""")
with gr.Tab("Radiology Analysis"):
with gr.Row():
gr.Markdown("## Patient Imaging Analysis")
with gr.Column():
medical_image = gr.Image(label="DICOM/Medical Image", type="pil")
clinical_query = gr.Textbox(label="Clinical Question")
analysis_btn = gr.Button("Generate Report", variant="primary")
report_output = gr.Textbox(label="Clinical Findings", interactive=False)
with gr.Tab("Diagnostic Imaging Generation"):
with gr.Row():
gr.Markdown("## Synthetic Medical Image Generation")
with gr.Column():
imaging_protocol = gr.Textbox(label="Imaging Protocol")
generate_btn = gr.Button("Generate Study", variant="primary")
study_gallery = gr.Gallery(
label="Generated Images",
columns=2,
height=MEDICAL_MODEL_CONFIG["max_image_size"]
)
# Medical workflow connections
analysis_btn.click(
medical_image_analysis,
inputs=[medical_image, clinical_query],
outputs=report_output
)
generate_btn.click(
generate_medical_image,
inputs=[imaging_protocol],
outputs=study_gallery
)
# Launch with medical safety protocols
demo.launch(
server_name="0.0.0.0",
server_port=7860,
enable_queue=True,
max_threads=2,
show_error=True
)