image / app.py
mgbam's picture
Update app.py
bb16e72 verified
raw
history blame
2.86 kB
import torch
from janus.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
from diffusers import AutoencoderKL
import numpy as np
import gradio as gr
# Configure device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Initialize medical imaging components
def load_medical_models():
try:
# Load processor and tokenizer
processor = VLChatProcessor.from_pretrained("deepseek-ai/Janus-1.3B")
# Load base model
model = MultiModalityCausalLM.from_pretrained(
"deepseek-ai/Janus-1.3B",
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
).to(device).eval()
# Load VAE for image processing
vae = AutoencoderKL.from_pretrained(
"stabilityai/sdxl-vae",
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
).to(device).eval()
return processor, model, vae
except Exception as e:
print(f"Error loading models: {str(e)}")
raise
processor, model, vae = load_medical_models()
# Medical image analysis function
def medical_analysis(image, question, seed=42, top_p=0.95, temperature=0.1):
try:
# Set random seed for reproducibility
torch.manual_seed(seed)
np.random.seed(seed)
# Prepare inputs
if isinstance(image, np.ndarray):
image = Image.fromarray(image).convert("RGB")
inputs = processor(
text=question,
images=[image],
return_tensors="pt"
).to(device)
# Generate analysis
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=temperature,
top_p=top_p
)
return processor.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
return f"Analysis error: {str(e)}"
# Medical interface
with gr.Blocks(title="Medical Imaging Assistant") as demo:
gr.Markdown("# Medical Imaging AI Assistant")
with gr.Tab("Analysis"):
with gr.Row():
med_image = gr.Image(label="Input Image", type="pil")
med_question = gr.Textbox(label="Clinical Query")
analysis_output = gr.Textbox(label="Findings")
gr.Examples(
examples=[
["ultrasound_sample.jpg", "Identify any abnormalities in this ultrasound"],
["xray_sample.jpg", "Describe the bone structure visible in this X-ray"]
],
inputs=[med_image, med_question]
)
med_question.submit(
medical_analysis,
inputs=[med_image, med_question],
outputs=analysis_output
)
demo.launch()