Spaces:
Sleeping
Sleeping
File size: 7,794 Bytes
aa5de1c 8b30fd7 2bfad86 8b30fd7 aa5de1c 2bfad86 aa5de1c 2bfad86 8b30fd7 2bfad86 aa5de1c 2bfad86 fd51a26 2bfad86 aa5de1c 2bfad86 aa5de1c 2bfad86 fd51a26 2bfad86 6e34739 2bfad86 aa5de1c 8c1e894 aa5de1c 2bfad86 aa5de1c 2bfad86 8b30fd7 6e34739 fd51a26 8b30fd7 6e34739 8b30fd7 2bfad86 6e34739 2bfad86 aa5de1c 8b30fd7 2bfad86 aa5de1c 2bfad86 fd51a26 2bfad86 8b30fd7 2bfad86 8b30fd7 2bfad86 aa37e0c fd51a26 2bfad86 8b30fd7 2bfad86 8c1e894 2bfad86 aa5de1c 2bfad86 aa5de1c 2bfad86 8c1e894 aa5de1c 2bfad86 aa5de1c 2bfad86 aa5de1c 2bfad86 8c1e894 aa5de1c 8c1e894 2bfad86 aa5de1c 8c1e894 2bfad86 8c1e894 2bfad86 aa5de1c 2bfad86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import gradio as gr
import os
import google.generativeai as genai
from elevenlabs.client import ElevenLabs
from tavily import TavilyClient
import requests
import subprocess
import json
import time
import random
# --- 1. CONFIGURE API KEYS FROM HUGGING FACE SECRETS ---
try:
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
tavily_client = TavilyClient(api_key=os.environ["TAVILY_API_KEY"])
RUNWAY_API_KEY = os.environ["RUNWAY_API_KEY"]
elevenlabs_client = ElevenLabs(api_key=os.environ["ELEVENLABS_API_KEY"])
except KeyError as e:
raise ValueError(f"API Key Error: Please set the {e} secret in your Hugging Face Space settings.")
# --- 2. DEFINE API ENDPOINTS AND HEADERS ---
# !!!!!!!!!!! THE FIRST FIX: Use the correct V2 endpoint !!!!!!!!!!!
RUNWAY_API_URL = "https://api.runwayml.com/v2/tasks"
RUNWAY_HEADERS = {
"Authorization": f"Bearer {RUNWAY_API_KEY}",
"Content-Type": "application/json"
}
# --- 3. THE CORE VIDEO GENERATION FUNCTION ---
def generate_video_from_topic(topic_prompt, progress=gr.Progress(track_tqdm=True)):
job_id = f"{int(time.time())}_{random.randint(1000, 9999)}"
print(f"--- Starting New Job: {job_id} for topic: '{topic_prompt}' ---")
intermediate_files = []
try:
# STEP 1: RESEARCH (Tavily)
progress(0.1, desc="π Researching topic with Tavily...")
facts = "No research data available."
try:
research_results = tavily_client.search(query=f"Key facts and interesting points about {topic_prompt}", search_depth="basic")
if research_results and 'results' in research_results:
facts = "\n".join([res['content'] for res in research_results['results']])
except Exception as e:
print(f"Tavily API failed: {e}. Proceeding without research.")
# STEP 2: SCRIPT & SCENE PROMPTS (Gemini)
progress(0.2, desc="βοΈ Writing script with Gemini...")
gemini_model = genai.GenerativeModel('gemini-1.5-flash')
prompt = f"""
You are a creative director for viral short-form videos. Based on the topic '{topic_prompt}' and research, create a script.
Your output MUST be a valid JSON object with "narration_script" (string) and "scene_prompts" (a list of 4 detailed, cinematic prompts).
"""
response = gemini_model.generate_content(prompt)
try:
cleaned_text = response.text.strip().replace("```json", "").replace("```", "")
script_data = json.loads(cleaned_text)
narration = script_data['narration_script']
scene_prompts = script_data['scene_prompts']
except (json.JSONDecodeError, KeyError) as e:
raise gr.Error(f"Gemini did not return valid JSON. Error: {e}. Response was: {response.text}")
# STEP 3: VOICE OVER (ElevenLabs)
progress(0.3, desc="ποΈ Recording voiceover with ElevenLabs...")
audio_path = f"audio_{job_id}.mp3"
intermediate_files.append(audio_path)
response = elevenlabs_client.text_to_speech.convert(
voice_id="oWAxZDx7w5z9imAaTrzz", # Official ID for Adam
text=narration,
model_id="eleven_multilingual_v2"
)
with open(audio_path, "wb") as f:
for chunk in response:
f.write(chunk)
print(f"Audio file saved: {audio_path}")
# STEP 4: VISUALS (Runway)
video_clip_paths = []
for i, scene_prompt in enumerate(scene_prompts):
progress(0.4 + (i * 0.12), desc=f"π¬ Generating video scene {i+1}/{len(scene_prompts)}...")
runway_payload = {"text_prompt": scene_prompt}
post_response = requests.post(f"{RUNWAY_API_URL}/text-to-video", headers=RUNWAY_HEADERS, json=runway_payload)
if post_response.status_code != 200:
raise gr.Error(f"Runway API Error (start job): {post_response.status_code} - {post_response.text}")
task_id = post_response.json().get("uuid")
if not task_id:
raise gr.Error(f"Runway API did not return a task UUID. Response: {post_response.json()}")
video_url = None
for _ in range(60):
# !!!!!!!!!!! THE SECOND FIX: Use the correct V2 polling URL !!!!!!!!!!!
get_response = requests.get(f"https://api.runwayml.com/v2/tasks/{task_id}", headers=RUNWAY_HEADERS)
status_details = get_response.json()
status = status_details.get("status")
if status == "succeeded":
video_url = status_details.get("outputs", {}).get("video")
break
elif status == "failed":
raise gr.Error(f"Runway job failed. Details: {status_details.get('error_message')}")
print(f"Scene {i+1} status: {status}. Waiting 10 seconds...")
time.sleep(10)
if not video_url:
raise gr.Error(f"Runway job timed out for scene {i+1}.")
clip_path = f"scene_{i+1}_{job_id}.mp4"
intermediate_files.append(clip_path)
video_clip_paths.append(clip_path)
video_response = requests.get(video_url, stream=True)
with open(clip_path, "wb") as f:
for chunk in video_response.iter_content(chunk_size=1024):
if chunk: f.write(chunk)
print(f"Video clip saved: {clip_path}")
# STEP 5: STITCHING (FFmpeg)
progress(0.9, desc="βοΈ Assembling final video with FFmpeg...")
file_list_path = f"file_list_{job_id}.txt"
intermediate_files.append(file_list_path)
with open(file_list_path, "w") as f:
for clip in video_clip_paths:
f.write(f"file '{clip}'\n")
combined_video_path = f"combined_video_{job_id}.mp4"
intermediate_files.append(combined_video_path)
subprocess.run(['ffmpeg', '-f', 'concat', '-safe', '0', '-i', file_list_path, '-c', 'copy', combined_video_path, '-y'], check=True)
final_video_path = f"final_video_{job_id}.mp4"
subprocess.run(['ffmpeg', '-i', combined_video_path, '-i', audio_path, '-c:v', 'copy', '-c:a', 'aac', '-shortest', final_video_path, '-y'], check=True)
print(f"Final video created at: {final_video_path}")
progress(1.0, desc="β
Done!")
return final_video_path
except Exception as e:
print(f"--- JOB {job_id} FAILED --- \nError: {e}")
raise gr.Error(f"An error occurred: {e}")
finally:
# STEP 6: CLEANUP
print("Cleaning up intermediate files...")
for file_path in intermediate_files:
if os.path.exists(file_path):
os.remove(file_path)
print(f"Removed: {file_path}")
# --- 4. CREATE AND LAUNCH THE GRADIO INTERFACE ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π€ My Personal AI Video Studio")
gr.Markdown("Enter a topic to generate a short-form video. This private tool is used for fulfilling freelance orders.")
with gr.Row():
topic_input = gr.Textbox(label="Video Topic", placeholder="e.g., 'The history of coffee'", scale=3)
generate_button = gr.Button("Generate Video", variant="primary", scale=1)
with gr.Row():
video_output = gr.Video(label="Generated Video")
generate_button.click(fn=generate_video_from_topic, inputs=topic_input, outputs=video_output)
gr.Markdown("--- \n ### Examples of Good Topics:\n - A product: 'The new waterproof Chrono-Watch X1'\n - A concept: 'The science of sleep'")
if __name__ == "__main__":
demo.launch() |