Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import google.generativeai as genai | |
# Import other SDKs for Runway, ElevenLabs, Tavily | |
# For example: from elevenlabs import generate, play, set_api_key | |
import subprocess | |
import json | |
import time | |
# --- 1. LOAD API KEYS FROM SECRETS --- | |
# This is the secure way to do it in Hugging Face Spaces | |
genai.configure(api_key=os.environ.get('GEMINI_API_KEY')) | |
# set_api_key(os.environ.get('ELEVENLABS_API_KEY')) | |
# ... and so on for other APIs | |
# --- 2. DEFINE THE CORE VIDEO GENERATION FUNCTION --- | |
# This function will take the client's prompt and do all the work. | |
def generate_video_from_topic(topic_prompt): | |
print(f"Starting video generation for topic: {topic_prompt}") | |
# Placeholder for the final video path | |
final_video_path = None | |
try: | |
# STEP A: RESEARCH (Tavily) - Optional but recommended | |
# research_results = tavily_client.search(query=f"Key points about {topic_prompt}") | |
# facts = research_results['results'] | |
# STEP B: SCRIPT & SCENE PROMPTS (Gemini) | |
# We ask Gemini for a structured JSON output | |
gemini_model = genai.GenerativeModel('gemini-pro') | |
prompt = f""" | |
Create a short video script about '{topic_prompt}'. | |
The video should be about 30 seconds long. | |
Return a JSON object with two keys: 'narration_script' (a string) and 'scene_prompts' (a list of 4 detailed, cinematic visual prompts for an AI video generator). | |
Example: | |
{{ | |
"narration_script": "This is the complete narration for the video.", | |
"scene_prompts": ["prompt 1", "prompt 2", "prompt 3", "prompt 4"] | |
}} | |
""" | |
response = gemini_model.generate_content(prompt) | |
script_data = json.loads(response.text) | |
narration = script_data['narration_script'] | |
scene_prompts = script_data['scene_prompts'] | |
print(f"Generated Narration: {narration}") | |
print(f"Generated Scene Prompts: {scene_prompts}") | |
# STEP C: VOICE OVER (ElevenLabs) | |
# audio_bytes = generate(text=narration, voice="Adam", model="eleven_multilingual_v2") | |
# with open("audio.mp3", "wb") as f: | |
# f.write(audio_bytes) | |
# print("Audio file generated.") | |
# --- MOCKUP for now --- | |
# Since API calls cost money, let's use a placeholder for testing | |
print("MOCK: Skipping real API calls for audio. Using a placeholder.") | |
# Create a silent audio file of the right length for testing | |
narration_duration = len(narration.split()) / 2.5 # Estimate duration | |
subprocess.run(['ffmpeg', '-f', 'lavfi', '-i', 'anullsrc=r=44100:cl=mono', '-t', str(narration_duration), '-q:a', '9', '-acodec', 'libmp3lame', 'audio.mp3', '-y']) | |
# STEP D: VISUALS (Runway/Hailuo) | |
video_clips = [] | |
for i, scene_prompt in enumerate(scene_prompts): | |
print(f"Generating video for scene {i+1}: {scene_prompt}") | |
# MOCKUP: Create a simple placeholder video clip | |
clip_path = f"scene_{i+1}.mp4" | |
subprocess.run([ | |
'ffmpeg', '-f', 'lavfi', '-i', f'smptebars=size=1920x1080:rate=30', | |
'-t', '4', '-pix_fmt', 'yuv420p', clip_path, '-y' | |
]) | |
video_clips.append(clip_path) | |
# STEP E: STITCHING (FFmpeg) | |
# Create a file list for ffmpeg | |
with open("file_list.txt", "w") as f: | |
for clip in video_clips: | |
f.write(f"file '{clip}'\n") | |
# Concatenate video clips | |
subprocess.run(['ffmpeg', '-f', 'concat', '-safe', '0', '-i', 'file_list.txt', '-c', 'copy', 'combined_video.mp4', '-y']) | |
# Add audio to the combined video | |
final_video_path = f"final_video_{int(time.time())}.mp4" | |
subprocess.run([ | |
'ffmpeg', '-i', 'combined_video.mp4', '-i', 'audio.mp3', '-c:v', 'copy', | |
'-c:a', 'aac', '-shortest', final_video_path, '-y' | |
]) | |
print(f"Final video created at: {final_video_path}") | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
# You can return an error message to the Gradio interface | |
raise gr.Error(f"Failed to generate video. Error: {e}") | |
# Return the path to the final video so Gradio can display it | |
return final_video_path | |
# --- 3. CREATE THE GRADIO INTERFACE --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# π€ My Personal AI Video Studio") | |
gr.Markdown("Enter a topic to generate a short-form video for social media. Used for fulfilling Fiverr orders.") | |
with gr.Row(): | |
topic_input = gr.Textbox(label="Video Topic", placeholder="e.g., 'The benefits of a standing desk'") | |
generate_button = gr.Button("Generate Video", variant="primary") | |
with gr.Row(): | |
video_output = gr.Video(label="Generated Video") | |
generate_button.click( | |
fn=generate_video_from_topic, | |
inputs=topic_input, | |
outputs=video_output | |
) | |
# --- 4. LAUNCH THE APP --- | |
demo.launch() |