Spaces:
Sleeping
Sleeping
File size: 6,415 Bytes
253afd8 fe72195 2d8777b 253afd8 fe72195 9f48d45 253afd8 fe72195 9f48d45 fe72195 9f48d45 fe72195 58e9888 9f48d45 58e9888 9f48d45 58e9888 9f48d45 58e9888 9f48d45 fe72195 9f48d45 fe72195 9f48d45 fe72195 9f48d45 fe72195 9f48d45 58e9888 fe72195 218d2f0 fe72195 218d2f0 58e9888 253afd8 9f48d45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import streamlit as st
import pdfplumber
import pytesseract
from PIL import Image
import json
import pandas as pd
from io import BytesIO
import time
from openai import OpenAI
import groq
class SyntheticDataFactory:
PROVIDER_CONFIG = {
"Deepseek": {
"client": lambda key: OpenAI(base_url="https://api.deepseek.com/v1", api_key=key),
"models": ["deepseek-chat"],
"key_label": "Deepseek API Key"
},
"OpenAI": {
"client": lambda key: OpenAI(api_key=key),
"models": ["gpt-4-turbo"],
"key_label": "OpenAI API Key"
},
"Groq": {
"client": lambda key: groq.Groq(api_key=key),
"models": ["mixtral-8x7b-32768", "llama2-70b-4096"],
"key_label": "Groq API Key"
}
}
def __init__(self):
self.init_session_state()
def init_session_state(self):
if 'qa_data' not in st.session_state:
st.session_state.qa_data = []
if 'processing' not in st.session_state:
st.session_state.processing = {
'stage': 'idle',
'errors': [],
'progress': 0
}
def process_pdf(self, file):
"""Process PDF with error handling"""
try:
with pdfplumber.open(file) as pdf:
pages = pdf.pages
for i, page in enumerate(pages):
# Update progress
st.session_state.processing['progress'] = (i+1)/len(pages)
# Process page content
text = page.extract_text() or ""
images = self.process_images(page)
# Store in session state
st.session_state.qa_data.append({
"page": i+1,
"text": text,
"images": images
})
time.sleep(0.1) # Simulate processing
return True
except Exception as e:
st.error(f"PDF processing failed: {str(e)}")
return False
def process_images(self, page):
"""Robust image processing"""
images = []
for img in page.images:
try:
# Handle different PDF image formats
stream = img['stream']
width = int(stream.get('Width', stream.get('W', 0)))
height = int(stream.get('Height', stream.get('H', 0)))
if width > 0 and height > 0:
image = Image.frombytes(
"RGB" if 'ColorSpace' in stream else "L",
(width, height),
stream.get_data()
)
images.append(image)
except Exception as e:
st.warning(f"Image processing error: {str(e)[:100]}")
return images
def generate_qa(self, provider, api_key, model, temp):
"""Generate Q&A pairs with selected provider"""
try:
client = self.PROVIDER_CONFIG[provider]["client"](api_key)
for item in st.session_state.qa_data:
prompt = f"Generate 3 Q&A pairs from this financial content:\n{item['text']}\nOutput JSON format with keys: question, answer_1, answer_2"
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=temp,
response_format={"type": "json_object"}
)
try:
result = json.loads(response.choices[0].message.content)
item["qa_pairs"] = result.get("qa_pairs", [])
except json.JSONDecodeError:
st.error("Failed to parse AI response")
st.session_state.processing['stage'] = 'complete'
return True
except Exception as e:
st.error(f"Generation failed: {str(e)}")
return False
def main():
st.set_page_config(
page_title="Enterprise Data Factory",
page_icon="🏭",
layout="wide"
)
factory = SyntheticDataFactory()
# Sidebar Configuration
with st.sidebar:
st.header("⚙️ AI Configuration")
provider = st.selectbox("Provider", list(factory.PROVIDER_CONFIG.keys()))
config = factory.PROVIDER_CONFIG[provider]
api_key = st.text_input(config["key_label"], type="password")
model = st.selectbox("Model", config["models"])
temp = st.slider("Temperature", 0.0, 1.0, 0.3)
# Main Interface
st.title("🚀 Enterprise Synthetic Data Factory")
uploaded_file = st.file_uploader("Upload Financial PDF", type=["pdf"])
if uploaded_file and api_key and st.button("Start Synthetic Generation"):
with st.status("Processing document...", expanded=True) as status:
# Process PDF
st.write("Extracting text and images...")
if factory.process_pdf(uploaded_file):
# Generate Q&A pairs
st.write("Generating synthetic data...")
if factory.generate_qa(provider, api_key, model, temp):
status.update(label="Processing complete!", state="complete", expanded=False)
# Display Results
if st.session_state.processing.get('stage') == 'complete':
st.subheader("Generated Q&A Pairs")
# Convert to DataFrame
all_qa = []
for item in st.session_state.qa_data:
for qa in item.get("qa_pairs", []):
qa["page"] = item["page"]
all_qa.append(qa)
if len(all_qa) > 0:
df = pd.DataFrame(all_qa)
st.dataframe(df)
# Export options
csv = df.to_csv(index=False).encode('utf-8')
st.download_button(
label="Download as CSV",
data=csv,
file_name="synthetic_data.csv",
mime="text/csv"
)
else:
st.warning("No Q&A pairs generated. Check your document content and API settings.")
if __name__ == "__main__":
main() |