Spaces:
Sleeping
Sleeping
File size: 16,905 Bytes
6bba837 253afd8 6bba837 4df2f52 fc2842c 253afd8 fc2842c 81c7e29 d6dd233 e9a68df fc2842c e9a68df 81c7e29 fc2842c 6bba837 4df2f52 6bba837 e9a68df 4df2f52 fc2842c e9a68df 6bba837 fc2842c 6bba837 3045f18 fc2842c e9a68df 3045f18 fc2842c 3045f18 fc2842c 6bba837 3045f18 e9a68df d6dd233 3045f18 d6dd233 6bba837 fc2842c 6bba837 3045f18 fc2842c 3045f18 e9a68df 3045f18 d6dd233 6bba837 fc2842c 6bba837 fc2842c 6bba837 fc2842c 6bba837 fc2842c 4df2f52 fc2842c 4df2f52 e9a68df fc2842c e9a68df fe72195 fc2842c 4df2f52 fc2842c 9f48d45 4df2f52 fc2842c 6bba837 fc2842c e9a68df 58e9888 fc2842c d6dd233 fc2842c e9a68df fc2842c 3045f18 fc2842c 3045f18 4df2f52 fc2842c 3045f18 fc2842c 3045f18 fc2842c 3045f18 fc2842c 6bba837 fc2842c 3045f18 e9a68df 3045f18 e9a68df fc2842c 3045f18 fc2842c 4df2f52 fc2842c 4df2f52 fc2842c 4df2f52 fc2842c 4df2f52 58e9888 fc2842c 6bba837 fc2842c 6bba837 fc2842c 6bba837 fc2842c 6bba837 d6dd233 fc2842c d6dd233 fc2842c d6dd233 81c7e29 fc2842c 4df2f52 fc2842c 4df2f52 fc2842c 58e9888 fc2842c 58e9888 9f48d45 fc2842c 4df2f52 fc2842c e9a68df 81c7e29 fc2842c d6dd233 81c7e29 fc2842c e9a68df fc2842c e9a68df 3045f18 fc2842c 81c7e29 fc2842c d6dd233 4df2f52 d6dd233 fc2842c d6dd233 fc2842c d6dd233 e9a68df 81c7e29 d6dd233 fc2842c d6dd233 3045f18 fc2842c 6bba837 fc2842c 6bba837 4df2f52 3045f18 d6dd233 4df2f52 fc2842c 6bba837 4df2f52 fc2842c 4df2f52 fc2842c 3045f18 fc2842c 3045f18 81c7e29 4df2f52 d6dd233 fc2842c 4df2f52 58e9888 fc2842c 6bba837 d6dd233 fc2842c 6bba837 d6dd233 6bba837 d6dd233 fc2842c d6dd233 fc2842c 81c7e29 fc2842c 4df2f52 81c7e29 fc2842c 4df2f52 fc2842c d6dd233 fc2842c d6dd233 fc2842c 81c7e29 fc2842c 4df2f52 81c7e29 fc2842c 81c7e29 fc2842c 81c7e29 fc2842c 81c7e29 4df2f52 3045f18 6bba837 fc2842c 81c7e29 fc2842c 81c7e29 fc2842c 81c7e29 fc2842c 81c7e29 fc2842c 81c7e29 fc2842c 81c7e29 fc2842c 81c7e29 fc2842c e9a68df 81c7e29 253afd8 6bba837 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import json
import requests
import streamlit as st
import pdfplumber
import pandas as pd
import sqlalchemy
from typing import Any, Dict, List
# Provider clients (ensure these are installed if you plan to use them)
try:
from openai import OpenAI
except ImportError:
OpenAI = None
try:
import groq
except ImportError:
groq = None
# Hugging Face Inference API endpoint
HF_API_URL = "https://api-inference.huggingface.co/models/"
DEFAULT_TEMPERATURE = 0.1
GROQ_MODEL = "mixtral-8x7b-32768"
class AdvancedSyntheticDataGenerator:
"""
Advanced Synthetic Data Generator that supports multiple input types,
customizable prompt templates, multiple LLM providers, and detailed debugging.
"""
def __init__(self) -> None:
self._setup_providers()
self._setup_input_handlers()
self._initialize_session_state()
# Customizable prompt template with placeholders for data, instructions, and output format.
self.custom_prompt_template = (
"You are an expert synthetic data generator. "
"Given the data below and following the instructions provided, generate high-quality, diverse synthetic data. "
"Ensure the output adheres to the specified format.\n\n"
"-------------------------\n"
"Data:\n{data}\n\n"
"Instructions:\n{instructions}\n\n"
"Output Format: {format}\n"
"-------------------------\n"
)
def _setup_providers(self) -> None:
"""Configure available LLM providers and their initialization routines."""
self.providers: Dict[str, Dict[str, Any]] = {
"Deepseek": {
"client": lambda key: OpenAI(base_url="https://api.deepseek.com/v1", api_key=key) if OpenAI else None,
"models": ["deepseek-chat"],
},
"OpenAI": {
"client": lambda key: OpenAI(api_key=key) if OpenAI else None,
"models": ["gpt-4-turbo", "gpt-3.5-turbo"],
},
"Groq": {
"client": lambda key: groq.Groq(api_key=key) if groq else None,
"models": [GROQ_MODEL],
},
"HuggingFace": {
"client": lambda key: {"headers": {"Authorization": f"Bearer {key}"}},
"models": ["gpt2", "llama-2"],
},
}
def _setup_input_handlers(self) -> None:
"""Register handlers for different input data types."""
self.input_handlers: Dict[str, Any] = {
"text": self.handle_text,
"pdf": self.handle_pdf,
"csv": self.handle_csv,
"api": self.handle_api,
"db": self.handle_db,
}
def _initialize_session_state(self) -> None:
"""Initialize Streamlit session state with default configuration."""
defaults = {
"config": {
"provider": "OpenAI",
"model": "gpt-4-turbo",
"temperature": DEFAULT_TEMPERATURE,
"output_format": "plain_text", # Options: plain_text, json, csv
},
"api_key": "",
"inputs": [], # List to store all input sources
"instructions": "", # Custom instructions for synthetic data generation
"synthetic_data": "", # The generated output
"error_logs": [], # Logs for any errors during processing
}
for key, value in defaults.items():
if key not in st.session_state:
st.session_state[key] = value
def log_error(self, message: str) -> None:
"""Log an error message both to session state and in the UI."""
st.session_state.error_logs.append(message)
st.error(message)
# ===== Input Handlers =====
def handle_text(self, text: str) -> Dict[str, Any]:
return {"data": text, "source": "text"}
def handle_pdf(self, file) -> Dict[str, Any]:
try:
with pdfplumber.open(file) as pdf:
full_text = ""
for page in pdf.pages:
page_text = page.extract_text() or ""
full_text += page_text + "\n"
return {"data": full_text, "source": "pdf"}
except Exception as e:
self.log_error(f"PDF Processing Error: {e}")
return {"data": "", "source": "pdf"}
def handle_csv(self, file) -> Dict[str, Any]:
try:
df = pd.read_csv(file)
# Convert the DataFrame to JSON for simplicity.
return {"data": df.to_json(orient="records"), "source": "csv"}
except Exception as e:
self.log_error(f"CSV Processing Error: {e}")
return {"data": "", "source": "csv"}
def handle_api(self, config: Dict[str, str]) -> Dict[str, Any]:
try:
response = requests.get(config["url"], headers=config.get("headers", {}), timeout=10)
response.raise_for_status()
return {"data": json.dumps(response.json()), "source": "api"}
except Exception as e:
self.log_error(f"API Processing Error: {e}")
return {"data": "", "source": "api"}
def handle_db(self, config: Dict[str, str]) -> Dict[str, Any]:
try:
engine = sqlalchemy.create_engine(config["connection"])
with engine.connect() as conn:
result = conn.execute(sqlalchemy.text(config["query"]))
rows = [dict(row) for row in result]
return {"data": json.dumps(rows), "source": "db"}
except Exception as e:
self.log_error(f"Database Processing Error: {e}")
return {"data": "", "source": "db"}
def aggregate_inputs(self) -> str:
"""Combine all input sources into a single aggregated string."""
aggregated_data = ""
for item in st.session_state.inputs:
aggregated_data += f"Source: {item.get('source', 'unknown')}\n"
aggregated_data += item.get("data", "") + "\n\n"
return aggregated_data.strip()
def build_prompt(self) -> str:
"""
Build the complete prompt using aggregated data, custom instructions,
and the desired output format.
"""
aggregated_data = self.aggregate_inputs()
instructions = st.session_state.instructions or "Generate diverse, coherent synthetic data."
output_format = st.session_state.config.get("output_format", "plain_text")
prompt = self.custom_prompt_template.format(
data=aggregated_data, instructions=instructions, format=output_format
)
st.write("### Built Prompt")
st.write(prompt)
return prompt
def generate_synthetic_data(self) -> bool:
"""
Generate synthetic data by sending the built prompt to the selected LLM provider.
Returns True if generation succeeds.
"""
api_key = st.session_state.api_key
if not api_key:
self.log_error("API key is missing!")
return False
provider_name = st.session_state.config["provider"]
provider_cfg = self.providers.get(provider_name)
if not provider_cfg:
self.log_error(f"Provider {provider_name} is not configured.")
return False
client_initializer = provider_cfg["client"]
client = client_initializer(api_key)
model = st.session_state.config["model"]
temperature = st.session_state.config["temperature"]
prompt = self.build_prompt()
st.info(f"Using **{provider_name}** with model **{model}** at temperature **{temperature:.2f}**")
try:
if provider_name == "HuggingFace":
response = self._huggingface_inference(client, prompt, model)
else:
response = self._standard_inference(client, prompt, model, temperature)
st.write("### Raw API Response")
st.write(response)
synthetic_data = self._parse_response(response, provider_name)
st.write("### Parsed Synthetic Data")
st.write(synthetic_data)
st.session_state.synthetic_data = synthetic_data
return True
except Exception as e:
self.log_error(f"Generation failed: {e}")
return False
def _standard_inference(self, client: Any, prompt: str, model: str, temperature: float) -> Any:
"""
Inference for providers using an OpenAI-compatible API.
"""
try:
st.write("Sending prompt via standard inference...")
result = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
)
st.write("Standard inference result received.")
return result
except Exception as e:
self.log_error(f"Standard Inference Error: {e}")
return None
def _huggingface_inference(self, client: Dict[str, Any], prompt: str, model: str) -> Any:
"""
Inference for the Hugging Face Inference API.
"""
try:
st.write("Sending prompt to HuggingFace API...")
response = requests.post(
HF_API_URL + model,
headers=client["headers"],
json={"inputs": prompt},
timeout=30,
)
response.raise_for_status()
st.write("HuggingFace API response received.")
return response.json()
except Exception as e:
self.log_error(f"HuggingFace Inference Error: {e}")
return None
def _parse_response(self, response: Any, provider: str) -> str:
"""
Parse the LLM response into a synthetic data string.
"""
st.write("Parsing response for provider:", provider)
try:
if provider == "HuggingFace":
if isinstance(response, list) and response and "generated_text" in response[0]:
return response[0]["generated_text"]
else:
self.log_error("Unexpected HuggingFace response format.")
return ""
else:
# Expecting a structure similar to OpenAI's response.
if response and hasattr(response, "choices") and response.choices:
return response.choices[0].message.content
else:
self.log_error("Unexpected response format from provider.")
return ""
except Exception as e:
self.log_error(f"Response Parsing Error: {e}")
return ""
# ===== Advanced UI Components =====
def advanced_config_ui(generator: AdvancedSyntheticDataGenerator):
"""Display advanced configuration options in the sidebar."""
with st.sidebar:
st.header("Advanced Configuration")
provider = st.selectbox("Select Provider", list(generator.providers.keys()))
st.session_state.config["provider"] = provider
provider_cfg = generator.providers[provider]
model = st.selectbox("Select Model", provider_cfg["models"])
st.session_state.config["model"] = model
temperature = st.slider("Temperature", 0.0, 1.0, DEFAULT_TEMPERATURE)
st.session_state.config["temperature"] = temperature
output_format = st.radio("Output Format", ["plain_text", "json", "csv"])
st.session_state.config["output_format"] = output_format
api_key = st.text_input(f"{provider} API Key", type="password")
st.session_state.api_key = api_key
instructions = st.text_area("Custom Instructions",
"Generate diverse, coherent synthetic data based on the input sources.",
height=100)
st.session_state.instructions = instructions
def advanced_input_ui(generator: AdvancedSyntheticDataGenerator):
"""Display input data source options using tabs."""
st.subheader("Add Input Data")
tabs = st.tabs(["Text", "PDF", "CSV", "API", "Database"])
with tabs[0]:
text_input = st.text_area("Enter text input", height=150)
if st.button("Add Text Input", key="text_input"):
if text_input.strip():
st.session_state.inputs.append(generator.handle_text(text_input))
st.success("Text input added!")
else:
st.warning("Empty text input.")
with tabs[1]:
pdf_file = st.file_uploader("Upload PDF", type=["pdf"])
if pdf_file is not None:
st.session_state.inputs.append(generator.handle_pdf(pdf_file))
st.success("PDF input added!")
with tabs[2]:
csv_file = st.file_uploader("Upload CSV", type=["csv"])
if csv_file is not None:
st.session_state.inputs.append(generator.handle_csv(csv_file))
st.success("CSV input added!")
with tabs[3]:
api_url = st.text_input("API Endpoint URL")
api_headers = st.text_area("API Headers (JSON format, optional)", height=100)
if st.button("Add API Input", key="api_input"):
headers = {}
try:
if api_headers:
headers = json.loads(api_headers)
except Exception as e:
generator.log_error(f"Invalid JSON for API Headers: {e}")
st.session_state.inputs.append(generator.handle_api({"url": api_url, "headers": headers}))
st.success("API input added!")
with tabs[4]:
db_conn = st.text_input("Database Connection String")
db_query = st.text_area("Database Query", height=100)
if st.button("Add Database Input", key="db_input"):
st.session_state.inputs.append(generator.handle_db({"connection": db_conn, "query": db_query}))
st.success("Database input added!")
def advanced_output_ui(generator: AdvancedSyntheticDataGenerator):
"""Display the generated synthetic data with output options."""
st.subheader("Synthetic Data Output")
if st.session_state.synthetic_data:
output_format = st.session_state.config.get("output_format", "plain_text")
if output_format == "json":
try:
json_output = json.loads(st.session_state.synthetic_data)
st.json(json_output)
except Exception:
st.text_area("Output", st.session_state.synthetic_data, height=300)
else:
st.text_area("Output", st.session_state.synthetic_data, height=300)
st.download_button("Download Output", st.session_state.synthetic_data,
file_name="synthetic_data.txt", mime="text/plain")
else:
st.info("No synthetic data generated yet.")
def advanced_logs_ui():
"""Display error logs and debug information in an expandable section."""
with st.expander("Error Logs & Debug Info", expanded=False):
if st.session_state.error_logs:
for log in st.session_state.error_logs:
st.write(log)
else:
st.write("No logs yet.")
# ===== Main Application =====
def main() -> None:
st.set_page_config(page_title="Advanced Synthetic Data Generator", layout="wide")
# Sidebar for advanced configuration
generator = AdvancedSyntheticDataGenerator()
advanced_config_ui(generator)
st.title("Advanced Synthetic Data Generator")
st.markdown(
"""
Welcome! This application allows you to generate synthetic data from multiple input sources.
Use the sections below to add inputs, generate data, view outputs, and review logs.
"""
)
# Input Data Section
with st.container():
st.header("1. Input Data Sources")
advanced_input_ui(generator)
if st.button("Clear All Inputs"):
st.session_state.inputs = []
st.success("All inputs have been cleared!")
# Generation Section with a clearly visible button
with st.container():
st.header("2. Generate Synthetic Data")
if st.button("Generate Synthetic Data", key="generate_button"):
with st.spinner("Generating synthetic data..."):
if generator.generate_synthetic_data():
st.success("Synthetic data generated successfully!")
else:
st.error("Data generation failed. Check logs for details.")
# Output Section
with st.container():
st.header("3. Synthetic Data Output")
advanced_output_ui(generator)
# Logs Section
with st.container():
st.header("4. Error Logs & Debug Information")
advanced_logs_ui()
if __name__ == "__main__":
main()
|