sythenticdata / app.py
mgbam's picture
Update app.py
ee72f5e verified
raw
history blame
16.2 kB
import json
import requests
import streamlit as st
import pdfplumber
import pandas as pd
import sqlalchemy
from typing import Any, Dict, List
# Provider clients – ensure these libraries are installed
try:
from openai import OpenAI
except ImportError:
OpenAI = None
try:
import groq
except ImportError:
groq = None
# Hugging Face inference endpoint
HF_API_URL = "https://api-inference.huggingface.co/models/"
DEFAULT_TEMPERATURE = 0.1
GROQ_MODEL = "mixtral-8x7b-32768"
class QADataGenerator:
"""
A Q&A Synthetic Generator that extracts and generates question-answer pairs
from various input sources using an LLM provider.
"""
def __init__(self) -> None:
self._setup_providers()
self._setup_input_handlers()
self._initialize_session_state()
# This prompt instructs the LLM to generate three Q&A pairs.
self.custom_prompt_template = (
"You are an expert in extracting question and answer pairs from documents. "
"Generate 3 Q&A pairs from the following data, formatted as a JSON list of dictionaries. "
"Each dictionary must have keys 'question' and 'answer'. "
"The questions should be clear and concise, and the answers must be based solely on the provided data with no external information. "
"Do not hallucinate. \n\n"
"Example JSON Output:\n"
"[{'question': 'What is the capital of France?', 'answer': 'Paris'}, "
"{'question': 'What is the highest mountain in the world?', 'answer': 'Mount Everest'}, "
"{'question': 'What is the chemical symbol for gold?', 'answer': 'Au'}]\n\n"
"Now, generate 3 Q&A pairs from this data:\n{data}"
)
def _setup_providers(self) -> None:
"""Configure available LLM providers and their client initialization routines."""
self.providers: Dict[str, Dict[str, Any]] = {
"Deepseek": {
"client": lambda key: OpenAI(base_url="https://api.deepseek.com/v1", api_key=key) if OpenAI else None,
"models": ["deepseek-chat"],
},
"OpenAI": {
"client": lambda key: OpenAI(api_key=key) if OpenAI else None,
"models": ["gpt-4-turbo", "gpt-3.5-turbo"],
},
"Groq": {
"client": lambda key: groq.Groq(api_key=key) if groq else None,
"models": [GROQ_MODEL],
},
"HuggingFace": {
"client": lambda key: {"headers": {"Authorization": f"Bearer {key}"}},
"models": ["gpt2", "llama-2"],
},
}
def _setup_input_handlers(self) -> None:
"""Register handlers for different input data types."""
self.input_handlers: Dict[str, Any] = {
"text": self.handle_text,
"pdf": self.handle_pdf,
"csv": self.handle_csv,
"api": self.handle_api,
"db": self.handle_db,
}
def _initialize_session_state(self) -> None:
"""Initialize Streamlit session state with default configuration."""
defaults = {
"config": {
"provider": "OpenAI",
"model": "gpt-4-turbo",
"temperature": DEFAULT_TEMPERATURE,
},
"api_key": "",
"inputs": [], # List to store input sources
"qa_pairs": "", # Generated Q&A pairs output
"error_logs": [], # To store any error messages
}
for key, value in defaults.items():
if key not in st.session_state:
st.session_state[key] = value
def log_error(self, message: str) -> None:
"""Log an error message to session state and display it."""
st.session_state.error_logs.append(message)
st.error(message)
# ----- Input Handlers -----
def handle_text(self, text: str) -> Dict[str, Any]:
return {"data": text, "source": "text"}
def handle_pdf(self, file) -> Dict[str, Any]:
try:
with pdfplumber.open(file) as pdf:
full_text = ""
for page in pdf.pages:
page_text = page.extract_text() or ""
full_text += page_text + "\n"
return {"data": full_text, "source": "pdf"}
except Exception as e:
self.log_error(f"PDF Processing Error: {e}")
return {"data": "", "source": "pdf"}
def handle_csv(self, file) -> Dict[str, Any]:
try:
df = pd.read_csv(file)
# Convert the DataFrame to a JSON string
return {"data": df.to_json(orient="records"), "source": "csv"}
except Exception as e:
self.log_error(f"CSV Processing Error: {e}")
return {"data": "", "source": "csv"}
def handle_api(self, config: Dict[str, str]) -> Dict[str, Any]:
try:
response = requests.get(config["url"], headers=config.get("headers", {}), timeout=10)
response.raise_for_status()
return {"data": json.dumps(response.json()), "source": "api"}
except Exception as e:
self.log_error(f"API Processing Error: {e}")
return {"data": "", "source": "api"}
def handle_db(self, config: Dict[str, str]) -> Dict[str, Any]:
try:
engine = sqlalchemy.create_engine(config["connection"])
with engine.connect() as conn:
result = conn.execute(sqlalchemy.text(config["query"]))
rows = [dict(row) for row in result]
return {"data": json.dumps(rows), "source": "db"}
except Exception as e:
self.log_error(f"Database Processing Error: {e}")
return {"data": "", "source": "db"}
def aggregate_inputs(self) -> str:
"""Combine all input sources into a single aggregated string."""
aggregated_data = ""
for item in st.session_state.inputs:
aggregated_data += f"Source: {item.get('source', 'unknown')}\n"
aggregated_data += item.get("data", "") + "\n\n"
return aggregated_data.strip()
def build_prompt(self) -> str:
"""
Build the complete prompt using the custom template and aggregated inputs.
"""
data = self.aggregate_inputs()
prompt = self.custom_prompt_template.format(data=data)
st.write("### Built Prompt")
st.write(prompt)
return prompt
def generate_qa_pairs(self) -> bool:
"""
Generate Q&A pairs by sending the built prompt to the selected LLM provider.
"""
api_key = st.session_state.api_key
if not api_key:
self.log_error("API key is missing!")
return False
provider_name = st.session_state.config["provider"]
provider_cfg = self.providers.get(provider_name)
if not provider_cfg:
self.log_error(f"Provider {provider_name} is not configured.")
return False
client_initializer = provider_cfg["client"]
client = client_initializer(api_key)
model = st.session_state.config["model"]
temperature = st.session_state.config["temperature"]
prompt = self.build_prompt()
st.info(f"Using **{provider_name}** with model **{model}** at temperature **{temperature:.2f}**")
try:
if provider_name == "HuggingFace":
response = self._huggingface_inference(client, prompt, model)
else:
response = self._standard_inference(client, prompt, model, temperature)
st.write("### Raw API Response")
st.write(response)
qa_pairs = self._parse_response(response, provider_name)
st.write("### Parsed Q&A Pairs")
st.write(qa_pairs)
st.session_state.qa_pairs = qa_pairs
return True
except Exception as e:
self.log_error(f"Generation failed: {e}")
return False
def _standard_inference(self, client: Any, prompt: str, model: str, temperature: float) -> Any:
"""Inference method for providers using an OpenAI-compatible API."""
try:
st.write("Sending prompt via standard inference...")
result = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
)
st.write("Standard inference result received.")
return result
except Exception as e:
self.log_error(f"Standard Inference Error: {e}")
return None
def _huggingface_inference(self, client: Dict[str, Any], prompt: str, model: str) -> Any:
"""Inference method for the Hugging Face Inference API."""
try:
st.write("Sending prompt to HuggingFace API...")
response = requests.post(
HF_API_URL + model,
headers=client["headers"],
json={"inputs": prompt},
timeout=30,
)
response.raise_for_status()
st.write("HuggingFace API response received.")
return response.json()
except Exception as e:
self.log_error(f"HuggingFace Inference Error: {e}")
return None
def _parse_response(self, response: Any, provider: str) -> List[Dict[str, str]]:
"""
Parse the LLM response and return a list of Q&A pairs.
Expects the response to be JSON formatted.
"""
st.write("Parsing response for provider:", provider)
try:
if provider == "HuggingFace":
# For HuggingFace, assume the generated text is under "generated_text"
if isinstance(response, list) and response and "generated_text" in response[0]:
raw_text = response[0]["generated_text"]
else:
self.log_error("Unexpected HuggingFace response format.")
return []
else:
# For OpenAI (and similar providers) assume the response is similar to:
# response.choices[0].message.content
if response and hasattr(response, "choices") and response.choices:
raw_text = response.choices[0].message.content
else:
self.log_error("Unexpected response format from provider.")
return []
# Try parsing the raw text as JSON
try:
qa_list = json.loads(raw_text)
if isinstance(qa_list, list):
return qa_list
else:
self.log_error("Parsed output is not a list.")
return []
except json.JSONDecodeError as e:
self.log_error(f"JSON Parsing Error: {e}. Raw output: {raw_text}")
return []
except Exception as e:
self.log_error(f"Response Parsing Error: {e}")
return []
# ============ UI Components ============
def config_ui(generator: QADataGenerator):
"""Display configuration options in the sidebar."""
with st.sidebar:
st.header("Configuration")
provider = st.selectbox("Select Provider", list(generator.providers.keys()))
st.session_state.config["provider"] = provider
provider_cfg = generator.providers[provider]
model = st.selectbox("Select Model", provider_cfg["models"])
st.session_state.config["model"] = model
temperature = st.slider("Temperature", 0.0, 1.0, DEFAULT_TEMPERATURE)
st.session_state.config["temperature"] = temperature
api_key = st.text_input(f"{provider} API Key", type="password")
st.session_state.api_key = api_key
def input_ui(generator: QADataGenerator):
"""Display input data source options using tabs."""
st.subheader("Input Data Sources")
tabs = st.tabs(["Text", "PDF", "CSV", "API", "Database"])
with tabs[0]:
text_input = st.text_area("Enter text input", height=150)
if st.button("Add Text Input", key="text_input"):
if text_input.strip():
st.session_state.inputs.append(generator.handle_text(text_input))
st.success("Text input added!")
else:
st.warning("Empty text input.")
with tabs[1]:
pdf_file = st.file_uploader("Upload PDF", type=["pdf"])
if pdf_file is not None:
st.session_state.inputs.append(generator.handle_pdf(pdf_file))
st.success("PDF input added!")
with tabs[2]:
csv_file = st.file_uploader("Upload CSV", type=["csv"])
if csv_file is not None:
st.session_state.inputs.append(generator.handle_csv(csv_file))
st.success("CSV input added!")
with tabs[3]:
api_url = st.text_input("API Endpoint URL")
api_headers = st.text_area("API Headers (JSON format, optional)", height=100)
if st.button("Add API Input", key="api_input"):
headers = {}
try:
if api_headers:
headers = json.loads(api_headers)
except Exception as e:
generator.log_error(f"Invalid JSON for API Headers: {e}")
st.session_state.inputs.append(generator.handle_api({"url": api_url, "headers": headers}))
st.success("API input added!")
with tabs[4]:
db_conn = st.text_input("Database Connection String")
db_query = st.text_area("Database Query", height=100)
if st.button("Add Database Input", key="db_input"):
st.session_state.inputs.append(generator.handle_db({"connection": db_conn, "query": db_query}))
st.success("Database input added!")
def output_ui(generator: QADataGenerator):
"""Display the generated Q&A pairs and provide a download option."""
st.subheader("Q&A Pairs Output")
if st.session_state.qa_pairs:
st.write("### Generated Q&A Pairs")
st.write(st.session_state.qa_pairs)
st.download_button(
"Download Output",
json.dumps(st.session_state.qa_pairs, indent=2),
file_name="qa_pairs.json",
mime="application/json"
)
else:
st.info("No Q&A pairs generated yet.")
def logs_ui():
"""Display error logs and debugging information in an expandable section."""
with st.expander("Error Logs & Debug Info", expanded=False):
if st.session_state.error_logs:
for log in st.session_state.error_logs:
st.write(log)
else:
st.write("No logs yet.")
def main():
st.set_page_config(page_title="Advanced Q&A Synthetic Generator", layout="wide")
st.title("Advanced Q&A Synthetic Generator")
st.markdown(
"""
Welcome to the Advanced Q&A Synthetic Generator. This tool extracts and generates question-answer pairs
from various input sources. Configure your provider in the sidebar, add input data, and click the button below to generate Q&A pairs.
"""
)
# Initialize generator and display configuration UI
generator = QADataGenerator()
config_ui(generator)
st.header("1. Input Data")
input_ui(generator)
if st.button("Clear All Inputs"):
st.session_state.inputs = []
st.success("All inputs have been cleared!")
st.header("2. Generate Q&A Pairs")
if st.button("Generate Q&A Pairs", key="generate_qa"):
with st.spinner("Generating Q&A pairs..."):
if generator.generate_qa_pairs():
st.success("Q&A pairs generated successfully!")
else:
st.error("Q&A generation failed. Check logs for details.")
st.header("3. Output")
output_ui(generator)
st.header("4. Logs & Debug Information")
logs_ui()
if __name__ == "__main__":
main()