File size: 9,690 Bytes
32dbb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dd7582
61542b8
32dbb08
61542b8
 
32dbb08
 
 
 
5dd7582
 
32dbb08
 
6a05116
06e8556
32dbb08
 
ce5dc65
32dbb08
 
 
 
 
ce5dc65
32dbb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
985478d
cd60bd0
 
 
 
 
 
 
c57e76c
32dbb08
 
61542b8
5dd7582
f585ea0
 
 
 
 
 
 
 
 
32dbb08
 
 
 
 
 
 
 
 
 
 
06e8556
 
 
 
 
 
 
 
 
 
 
 
 
5dd7582
06e8556
5dd7582
 
06e8556
 
5dd7582
 
06e8556
 
 
 
 
32dbb08
 
 
 
 
 
 
 
 
 
 
 
5dd7582
32dbb08
5dd7582
 
32dbb08
 
5dd7582
 
32dbb08
 
 
 
06e8556
32dbb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e8556
f585ea0
 
e46e945
f585ea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32dbb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import json
import gzip
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from io import StringIO

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    BENCHMARK_COLS_MULTIMODAL,
    BENCHMARK_COLS_MIB_SUBGRAPH,
    BENCHMARK_COLS_MIB_CAUSALGRAPH,
    COLS,
    COLS_MIB_SUBGRAPH,
    COLS_MIB_CAUSALGRAPH,
    COLS_MULTIMODAL,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    AutoEvalColumn_mib_subgraph,
    AutoEvalColumn_mib_causalgraph,
    fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph
from src.submission.submit import add_new_eval



def restart_space():
    API.restart_space(repo_id=REPO_ID)



### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


try:
    print(RESULTS_REPO_MIB_SUBGRAPH)
    snapshot_download(
        repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


try:
    print(RESULTS_REPO_MIB_CAUSALGRAPH)
    snapshot_download(
        repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()



LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH)

# LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib_causalgraph(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_CAUSALGRAPH, BENCHMARK_COLS_MIB_CAUSALGRAPH)
        
# In app.py, modify the LEADERBOARD initialization
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph(
    EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, 
    EVAL_REQUESTS_PATH, 
    COLS_MIB_CAUSALGRAPH, 
    BENCHMARK_COLS_MIB_CAUSALGRAPH
)

# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


def init_leaderboard_mib_subgraph(dataframe, track):
    print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
    
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    # filter for correct track
    # dataframe = dataframe.loc[dataframe["Track"] == track]

    print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=["Method"],  # Changed from AutoEvalColumn_mib_subgraph.model.name to "Method"
        hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )

def init_leaderboard_mib_causalgraph(dataframe, track):
    print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
    
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    # filter for correct track
    # dataframe = dataframe.loc[dataframe["Track"] == track]

    print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=["Method"],  # Changed from AutoEvalColumn_mib_causalgraph.model.name to "Method"
        hide_columns=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.hidden],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


def init_leaderboard(dataframe, track):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    # filter for correct track
    dataframe = dataframe.loc[dataframe["Track"] == track]

    # print(f"\n\n\n dataframe is {dataframe}\n\n\n")
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )

def process_json(temp_file):
    if temp_file is None:
        return {}

    # Handle file upload
    try:
        file_path = temp_file.name
        if file_path.endswith('.gz'):
            with gzip.open(file_path, 'rt') as f:
                data = json.load(f)
        else:
            with open(file_path, 'r') as f:
                data = json.load(f)
    except Exception as e:
        raise gr.Error(f"Error processing file: {str(e)}")

    gr.Markdown("Upload successful!")
    return data


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF, "strict")
        # with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small")
        # with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal")

        # with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=4):
        #     gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
 
        # with gr.TabItem("πŸ‘Ά Submit", elem_id="llm-benchmark-tab-table", id=5):
        #     with gr.Column():
        #         with gr.Row():                                                                                                           
        #             gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
        
        with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
            leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")

        # Then modify the Causal Graph tab section
        with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1):
            with gr.Tabs() as causalgraph_tabs:
                with gr.TabItem("Detailed View", id=0):
                    leaderboard_detailed = init_leaderboard_mib_causalgraph(
                        LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, 
                        "Causal Graph"
                    )
                with gr.TabItem("Aggregated View", id=1):
                    leaderboard_aggregated = init_leaderboard_mib_causalgraph(
                        LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, 
                        "Causal Graph"
                    )
                with gr.TabItem("Intervention Averaged", id=2):
                    leaderboard_averaged = init_leaderboard_mib_causalgraph(
                        LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED, 
                        "Causal Graph"
                    )
        
    # with gr.Row():
    #     with gr.Accordion("πŸ“™ Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch(share=True, ssr_mode=False)