File size: 13,354 Bytes
2fc77f5
 
 
 
 
e46e945
2fc77f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e46e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fc77f5
 
 
 
5dd7582
2fc77f5
 
5dd7582
2fc77f5
 
06e8556
2fc77f5
 
5dd7582
2fc77f5
 
 
 
 
 
5dd7582
2fc77f5
 
 
5dd7582
2fc77f5
 
61542b8
2fc77f5
5dd7582
 
06e8556
2fc77f5
 
5dd7582
2fc77f5
5dd7582
61542b8
 
 
2fc77f5
 
a100ebc
 
 
 
e46e945
 
 
 
 
 
a100ebc
e46e945
 
a100ebc
 
 
 
 
 
 
 
 
e46e945
 
 
 
a100ebc
e46e945
 
a100ebc
e46e945
 
 
 
 
 
 
2fc77f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks, TasksMultimodal, TasksMib_Subgraph, TasksMib_Causalgraph

def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False

## Leaderboard columns
auto_eval_column_dict = []
auto_eval_column_dict_multimodal = []

auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["hf_repo", ColumnContent, ColumnContent("HF Repo", "str", False)])
auto_eval_column_dict.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)])
#Scores
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])

auto_eval_column_dict_multimodal.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict_multimodal.append(["hf_repo", ColumnContent, ColumnContent("HF Repo", "str", False)])
auto_eval_column_dict_multimodal.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)])
for task in TasksMultimodal:
    auto_eval_column_dict_multimodal.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
    if task.value.col_name in ("ewok", "EWoK"):   # make sure this appears in the right order
        auto_eval_column_dict_multimodal.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)])
auto_eval_column_dict_multimodal.append(["vision_average", ColumnContent, ColumnContent("Vision Average", "number", True)])
auto_eval_column_dict_multimodal.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict_multimodal.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])



AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
AutoEvalColumnMultimodal = make_dataclass("AutoEvalColumnMultimodal", auto_eval_column_dict_multimodal, frozen=True)










auto_eval_column_dict_mib_subgraph = []

# Method name column
auto_eval_column_dict_mib_subgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])

# For each task and model combination
for task in TasksMib_Subgraph:
    for model in task.value.models:
        col_name = f"{task.value.benchmark}_{model}"  # ioi_meta_llama, mcqa_qwen, etc.
        auto_eval_column_dict_mib_subgraph.append([
            col_name, 
            ColumnContent, 
            ColumnContent(col_name, "number", True)
        ])

# Average column
auto_eval_column_dict_mib_subgraph.append(["average", ColumnContent, ColumnContent("Average", "number", True)])


# Create the dataclass for MIB columns
AutoEvalColumn_mib_subgraph = make_dataclass("AutoEvalColumn_mib_subgraph", auto_eval_column_dict_mib_subgraph, frozen=True)

# Column selection for display
COLS_MIB_SUBGRAPH = [c.name for c in fields(AutoEvalColumn_mib_subgraph) if not c.hidden]


BENCHMARK_COLS_MIB_SUBGRAPH = []
for task in TasksMib_Subgraph:
    for model in task.value.models:
        col_name = f"{task.value.col_name}_{model.replace('-', '_')}"
        BENCHMARK_COLS_MIB_SUBGRAPH.append(col_name)

# Implement the same for causal graph, auto_eval_column_dict_mib_causalgraph, AutoEvalColumn_mib_causalgraph
AutoEvalColumn_mib_causalgraph = []
COLS_MIB_CAUSALGRAPH = []
BENCHMARK_COLS_MIB_CAUSALGRAPH = []






# Initialize the MIB causal graph columns
auto_eval_column_dict_mib_causalgraph = []

# Method name column
auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])

# For each model-task-intervention combination
for task in TasksMib_Causalgraph:
    for model in task.value.models:
        for intervention in task.value.interventions:
            col_name = f"{model}_{task.value.benchmark}_{intervention}".lower()
            auto_eval_column_dict_mib_causalgraph.append([
                col_name, 
                ColumnContent, 
                ColumnContent(col_name, "number", True)
            ])

# Create the dataclass
AutoEvalColumn_mib_causalgraph = make_dataclass("AutoEvalColumn_mib_causalgraph", auto_eval_column_dict_mib_causalgraph, frozen=True)

# Column selection for display
COLS_MIB_CAUSALGRAPH = [c.name for c in fields(AutoEvalColumn_mib_causalgraph) if not c.hidden]
BENCHMARK_COLS_MIB_CAUSALGRAPH = [f"{model}_{task.value.benchmark}_{intervention}".lower()
                                 for task in TasksMib_Causalgraph
                                 for model in task.value.models
                                 for intervention in task.value.interventions]





















## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    track = ColumnContent("track", "str", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    status = ColumnContent("status", "str", True)

## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji

# Column selection

COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
COLS_MULTIMODAL = [c.name for c in fields(AutoEvalColumnMultimodal) if not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]
BENCHMARK_COLS_MULTIMODAL = [t.value.col_name for t in TasksMultimodal]

TEXT_TASKS = {
    "glue": ["cola", "sst2", "mrpc", "qqp", "mnli", "mnli-mm", "qnli", "rte",
            "boolq", "multirc", "wsc"],
    # Lots of BLiMP tasks – use verifier function below to see if you've included everything.
    "blimp": ["adjunct_island","anaphor_gender_agreement","anaphor_number_agreement","animate_subject_passive","animate_subject_trans",
        "causative","complex_NP_island","coordinate_structure_constraint_complex_left_branch","coordinate_structure_constraint_object_extraction","determiner_noun_agreement_1",
        "determiner_noun_agreement_2","determiner_noun_agreement_irregular_1","determiner_noun_agreement_irregular_2","determiner_noun_agreement_with_adjective_1",
        "determiner_noun_agreement_with_adj_2","determiner_noun_agreement_with_adj_irregular_1","determiner_noun_agreement_with_adj_irregular_2","distractor_agreement_relational_noun",
        "distractor_agreement_relative_clause","drop_argument","ellipsis_n_bar_1","ellipsis_n_bar_2",
        "existential_there_object_raising", "existential_there_quantifiers_1",
        "existential_there_quantifiers_2", "existential_there_subject_raising", "expletive_it_object_raising",
        "inchoative", "intransitive","irregular_past_participle_adjectives", "irregular_past_participle_verbs",
        "irregular_plural_subject_verb_agreement_1", "irregular_plural_subject_verb_agreement_2", "left_branch_island_echo_question", "left_branch_island_simple_question",
        "matrix_question_npi_licensor_present", "npi_present_1", "npi_present_2", "only_npi_licensor_present", "only_npi_scope", "passive_1", "passive_2",
        "principle_A_case_1", "principle_A_case_2", "principle_A_c_command", "principle_A_domain_1",
        "principle_A_domain_2", "principle_A_domain_3", "principle_A_reconstruction", "regular_plural_subject_verb_agreement_1",
        "regular_plural_subject_verb_agreement_2", "sentential_negation_npi_licensor_present", "sentential_negation_npi_scope", "sentential_subject_island",
        "superlative_quantifiers_1", "superlative_quantifiers_2", "tough_vs_raising_1", "tough_vs_raising_2",
        "transitive", "wh_island", "wh_questions_object_gap", "wh_questions_subject_gap",
        "wh_questions_subject_gap_long_distance", "wh_vs_that_no_gap", "wh_vs_that_no_gap_long_distance", "wh_vs_that_with_gap",
        "wh_vs_that_with_gap_long_distance"
    ],
    "blimp_supplement": ["hypernym", "qa_congruence_easy", "qa_congruence_tricky",
                "subject_aux_inversion", "turn_taking"],
    "ewok": ["agent-properties", "material-dynamics", "material-properties", "physical-dynamics",
            "physical-interactions", "physical-relations", "quantitative-properties",
            "social-interactions", "social-properties", "social-relations", "spatial-relations"]
}

VISION_TASKS = {
    "vqa": ["vqa"],
    "winoground": ["winoground"],
    "devbench": ["lex-viz_vocab", "gram-trog", "sem-things"]
}

NUM_EXPECTED_EXAMPLES = {
    "glue": {
        "cola": 522,
        "sst2": 436,
        "mrpc": 204,
        "qqp": 20215,
        "mnli": 4908,
        "mnli-mm": 4916,
        "qnli": 2732,
        "rte": 139,
        "boolq": 1635,
        "multirc": 2424,
        "wsc": 52
    },
    "blimp": {
        "adjunct_island": 928,
        "anaphor_gender_agreement": 971,
        "anaphor_number_agreement": 931,
        "animate_subject_passive": 895,
        "animate_subject_trans": 923,
        "causative": 818,
        "complex_NP_island": 846,
        "coordinate_structure_constraint_complex_left_branch": 906,
        "coordinate_structure_constraint_object_extraction": 949,
        "determiner_noun_agreement_1": 929,
        "determiner_noun_agreement_2": 931,
        "determiner_noun_agreement_irregular_1": 681,
        "determiner_noun_agreement_irregular_2": 820,
        "determiner_noun_agreement_with_adjective_1": 933,
        "determiner_noun_agreement_with_adj_2": 941,
        "determiner_noun_agreement_with_adj_irregular_1": 718,
        "determiner_noun_agreement_with_adj_irregular_2": 840,
        "distractor_agreement_relational_noun": 788,
        "distractor_agreement_relative_clause": 871,
        "drop_argument": 920,
        "ellipsis_n_bar_1": 802,
        "ellipsis_n_bar_2": 828,
        "existential_there_object_raising": 812,
        "existential_there_quantifiers_1": 930,
        "existential_there_quantifiers_2": 911,
        "existential_there_subject_raising": 924,
        "expletive_it_object_raising": 759,
        "inchoative": 855,
        "intransitive": 868,
        "irregular_past_participle_adjectives": 961,
        "irregular_past_participle_verbs": 942,
        "irregular_plural_subject_verb_agreement_1": 804,
        "irregular_plural_subject_verb_agreement_2": 892,
        "left_branch_island_echo_question": 947,
        "left_branch_island_simple_question": 951,
        "matrix_question_npi_licensor_present": 929,
        "npi_present_1": 909,
        "npi_present_2": 914,
        "only_npi_licensor_present": 882,
        "only_npi_scope": 837,
        "passive_1": 840,
        "passive_2": 903,
        "principle_A_case_1": 912,
        "principle_A_case_2": 915,
        "principle_A_c_command": 946,
        "principle_A_domain_1": 914,
        "principle_A_domain_2": 915,
        "principle_A_domain_3": 941,
        "principle_A_reconstruction": 967,
        "regular_plural_subject_verb_agreement_1": 890,
        "regular_plural_subject_verb_agreement_2": 945,
        "sentential_negation_npi_licensor_present": 919,
        "sentential_negation_npi_scope": 871,
        "sentential_subject_island": 961,
        "superlative_quantifiers_1": 979,
        "superlative_quantifiers_2": 986,
        "tough_vs_raising_1": 948,
        "tough_vs_raising_2": 920,
        "transitive": 868,
        "wh_island": 960,
        "wh_questions_object_gap": 859,
        "wh_questions_subject_gap": 898,
        "wh_questions_subject_gap_long_distance": 857,
        "wh_vs_that_no_gap": 861,
        "wh_vs_that_no_gap_long_distance": 875,
        "wh_vs_that_with_gap": 919,
        "wh_vs_that_with_gap_long_distance": 910
    },
    "blimp_supplement": {
        "hypernym": 842,
        "qa_congruence_easy": 64,
        "qa_congruence_tricky": 165,
        "subject_aux_inversion": 3867,
        "turn_taking": 280
    },
    "ewok": {
        "agent-properties": 2210,
        "material-dynamics": 770,
        "material-properties": 170,
        "physical-dynamics": 120,
        "physical-interactions": 556,
        "physical-relations": 818,
        "quantitative-properties": 314,
        "social-interactions": 294,
        "social-properties": 328,
        "social-relations": 1548,
        "spatial-relations": 490
    },
    "vqa": {
        "vqa": 25230
    },
    "winoground": {
        "winoground": 746
    },
    "devbench": {
        "lex-viz_vocab": 119,
        "gram-trog": 76,
        "sem-things": 1854
    }
}