File size: 6,598 Bytes
2fc77f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e46e945
 
 
 
 
 
 
 
2817fcb
 
 
 
 
 
e46e945
e27c948
 
 
 
 
 
 
 
 
 
 
 
b56a213
 
4780a48
 
b56a213
 
4780a48
 
 
 
 
 
 
e46e945
36438b0
56d1796
4780a48
 
 
 
 
 
 
56d1796
 
 
 
 
 
b56a213
 
4780a48
b56a213
4780a48
 
 
 
b56a213
e46e945
7086c8a
 
 
 
4780a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fc77f5
3c343e0
2fc77f5
 
 
 
 
 
 
 
3c343e0
2fc77f5
 
 
b624a39
2fc77f5
3c343e0
 
 
 
 
 
2fc77f5
b624a39
2fc77f5
3c343e0
b624a39
 
3c343e0
 
 
2fc77f5
 
3c343e0
2fc77f5
3c343e0
 
 
 
 
 
2fc77f5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from dataclasses import dataclass
from enum import Enum

@dataclass
class Task:
    benchmark: str
    metric: str
    col_name: str

class Tasks(Enum):
    # task_key in the json file, metric_key in the json file, name to display in the leaderboard 
    task0 = Task("blimp", "acc", "BLiMP")
    task1 = Task("blimp_supplement", "acc", "BLiMP Supplement")
    task2 = Task("glue", "acc", "(Super)GLUE")
    task3 = Task("ewok", "acc", "EWoK")

@dataclass
class TaskMIB_Subgraph:
    benchmark: str      # task name in json (ioi/arithmetic)
    models: list[str]   # list of models to show as sub-columns
    col_name: str       # display name in leaderboard
    metrics: list[str]  # metrics to store (edge_counts, faithfulness)

class TasksMib_Subgraph(Enum):
    task0 = TaskMIB_Subgraph("ioi", ["gpt2", "qwen2_5", "gemma2", "llama3"], "IOI", ["edge_counts", "faithfulness"])
    task1 = TaskMIB_Subgraph("mcqa", ["qwen2_5", "gemma2", "llama3"], "MCQA", ["edge_counts", "faithfulness"])
    task2 = TaskMIB_Subgraph("arithmetic_addition", ["llama3"], "arithmetic_addition", ["edge_counts", "faithfulness"])
    task3 = TaskMIB_Subgraph("arithmetic_subtraction", ["llama3"], "arithmetic_subtraction", ["edge_counts", "faithfulness"])
    task4 = TaskMIB_Subgraph("arc_easy", ["gemma2", "llama3"], "arc_easy", ["edge_counts", "faithfulness"])
    task5 = TaskMIB_Subgraph("arc_challenge", ["llama3"], "arc_challenge", ["edge_counts", "faithfulness"])

    @classmethod
    def get_all_tasks(cls):
        """Returns a list of all task benchmarks"""
        return [task.value.benchmark for task in cls]
    
    @classmethod
    def get_all_models(cls):
        """Returns a list of all unique models across all tasks"""
        models = set()
        for task in cls:
            models.update(task.value.models)
        return sorted(list(models))




# @dataclass 
# class TaskMIB_Causalgraph:
#     benchmark: str      
#     models: list[str]   
#     layers: dict[str, list[str]]  # Different layers for each model
#     col_name: str      
#     interventions: list[str]  
#     counterfactuals: list[str]  
#     metrics: list[str]  


# class TasksMib_Causalgraph(Enum):
#     task0 = TaskMIB_Causalgraph("MCQA", 
#         ["qwen2forcausallm", "gemma2forcausallm", "llamaforcausallm"],
#         {
#             "qwen2forcausallm": [str(i) for i in range(24)],    # 0-23
#             "gemma2forcausallm": [str(i) for i in range(26)],   # 0-25
#             "llamaforcausallm": [str(i) for i in range(32)]     # 0-31
#         },
#         "mcqa",
#         ["output_token", "output_location"],
#         ["randomLetter_counterfactual", "answerPosition_counterfactual", 
#          "answerPosition_randomLetter_counterfactual"],
#         ["score"]
#     )


@dataclass
class TaskMIB_Causalgraph:
    benchmark: str      # task name in json (ioi/arithmetic)
    models: list[str]   # list of models to show as sub-columns
    col_name: str       # display name in leaderboard
    metrics: list[str]  # metrics to store (average_score)

class TasksMib_Causalgraph(Enum):
    task0 = TaskMIB_Subgraph("ioi", ["GPT2ForCausalLM"], "IOI", ["average_score"])
    task1 = TaskMIB_Subgraph("mcqa", ["Qwen2ForCausalLM", "Gemma2ForCausalLM", "LlamaForCausalLM"], "MCQA", ["average_score"])
    task2 = TaskMIB_Subgraph("arithmetic_addition", ["Gemma2ForCausalLM", "LlamaForCausalLM"], "arithmetic_addition", ["average_score"])
    task3 = TaskMIB_Subgraph("arc_easy", ["Gemma2ForCausalLM", "LlamaForCausalLM"], "arc_easy", ["average_score"])

    @classmethod
    def get_all_tasks(cls):
        """Returns a list of all task benchmarks"""
        return [task.value.benchmark for task in cls]
    
    @classmethod
    def get_all_models(cls):
        """Returns a list of all unique models across all tasks"""
        models = set()
        for task in cls:
            models.update(task.value.models)
        return sorted(list(models))



# Your leaderboard name
TITLE = """<h1 align="center" id="space-title"> Mechanistic Interpretability Benchmark Leaderboards</h1>"""

# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
The leaderboards for each track of the 2024 Mechanistic Interpretability Benchmark.
"""

# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = f"""
This leaderboard displays scores on the private test set for the Mechanistic Interpretability Benchmark. Each track has its own tab.
"""

EVALUATION_QUEUE_TEXT = """
## Circuit localization track:

You'll need either (i) 1 circuit per task/model combinaton with floating-point importance scores for each edge or node, or (ii) 9 circuits per model/task with binary membership scores for each edge or node.
If (ii), then for each critical threshold k, the circuit should contain no more than k% of edges. See [here]() for examples of each valid circuit format.

Create a folder in a HuggingFace repository to hold your circuits. At the URL you provide, there should be one folder per task/model combination; these folders
should contain your circuit(s). As long as the folders contain the model and task names, you do not need to worry about the circuit filenames.
If you provide more circuits than needed, our evaluation script will take the first 9 lexicographically.

For specifications about the file format for a circuit, see the README on our project GitHub: TODO

Once your submission has been validated and makes it to the front of the evaluation queue, we'll submit your model for evaluation on the private test set.

## Causal variable localization track:

You'll need to provide a link to a HuggingFace repository containing your trained featurizer, the layer on which the featurizer was trained, and the code needed to load and run your featurizer.
See TODO for an example.
"""

CITATION_BUTTON_LABEL = "If you would like to cite these results, please cite the MIB paper, as well as the author(s) of the method(s) whose results you cite!"
CITATION_BUTTON_TEXT = r"""
@article{mib-2025,
    title = {{MIB}: A Mechanistic Interpretability Benchmark},
    author = {Aaron Mueller and Atticus Geiger and Sarah Wiegreffe and Dana Arad and Iv{\'a}n Arcuschin and Adam Belfki and Yik Siu Chan and Jaden Fiotto-Kaufman and Tal Haklay and Michael Hanna and Jing Huang and Rohan Gupta and Yaniv Nikankin and Hadas Orgad and Nikhil Prakash and Anja Reusch and Aruna Sankaranarayanan and Shun Shao and Alessandro Stolfo and Martin Tutek and Amir Zur and David Bau and Yonatan Belinkov},
    year = {2025},
    note = {To appear},
    journal = {arXiv preprint}
}
"""