Spaces:
Running
Running
File size: 16,674 Bytes
2fc77f5 e46e945 2fc77f5 e46e945 2fc77f5 5dd7582 2fc77f5 5dd7582 2fc77f5 06e8556 2fc77f5 5dd7582 2fc77f5 5dd7582 2fc77f5 5dd7582 2fc77f5 61542b8 2fc77f5 5dd7582 06e8556 2fc77f5 5dd7582 2fc77f5 5dd7582 61542b8 2fc77f5 a100ebc 53c7136 7ed00c5 f65df62 29701ab e46e945 531005f f65df62 e46e945 753260a 53c7136 531005f 753260a 53c7136 753260a 53c7136 a100ebc 531005f e46e945 531005f e46e945 531005f a100ebc e46e945 a100ebc e46e945 2fc77f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import Tasks, TasksMultimodal, TasksMib_Subgraph, TasksMib_Causalgraph
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
auto_eval_column_dict_multimodal = []
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["hf_repo", ColumnContent, ColumnContent("HF Repo", "str", False)])
auto_eval_column_dict.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)])
#Scores
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
auto_eval_column_dict_multimodal.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict_multimodal.append(["hf_repo", ColumnContent, ColumnContent("HF Repo", "str", False)])
auto_eval_column_dict_multimodal.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)])
for task in TasksMultimodal:
auto_eval_column_dict_multimodal.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
if task.value.col_name in ("ewok", "EWoK"): # make sure this appears in the right order
auto_eval_column_dict_multimodal.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)])
auto_eval_column_dict_multimodal.append(["vision_average", ColumnContent, ColumnContent("Vision Average", "number", True)])
auto_eval_column_dict_multimodal.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict_multimodal.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
AutoEvalColumnMultimodal = make_dataclass("AutoEvalColumnMultimodal", auto_eval_column_dict_multimodal, frozen=True)
auto_eval_column_dict_mib_subgraph = []
# Method name column
auto_eval_column_dict_mib_subgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
# For each task and model combination
for task in TasksMib_Subgraph:
for model in task.value.models:
col_name = f"{task.value.benchmark}_{model}" # ioi_meta_llama, mcqa_qwen, etc.
auto_eval_column_dict_mib_subgraph.append([
col_name,
ColumnContent,
ColumnContent(col_name, "number", True)
])
# Average column
auto_eval_column_dict_mib_subgraph.append(["average", ColumnContent, ColumnContent("Average", "number", True)])
# Create the dataclass for MIB columns
AutoEvalColumn_mib_subgraph = make_dataclass("AutoEvalColumn_mib_subgraph", auto_eval_column_dict_mib_subgraph, frozen=True)
# Column selection for display
COLS_MIB_SUBGRAPH = [c.name for c in fields(AutoEvalColumn_mib_subgraph) if not c.hidden]
BENCHMARK_COLS_MIB_SUBGRAPH = []
for task in TasksMib_Subgraph:
for model in task.value.models:
col_name = f"{task.value.col_name}_{model.replace('-', '_')}"
BENCHMARK_COLS_MIB_SUBGRAPH.append(col_name)
# Implement the same for causal graph, auto_eval_column_dict_mib_causalgraph, AutoEvalColumn_mib_causalgraph
AutoEvalColumn_mib_causalgraph = []
COLS_MIB_CAUSALGRAPH = []
BENCHMARK_COLS_MIB_CAUSALGRAPH = []
# # Initialize the MIB causal graph columns
# auto_eval_column_dict_mib_causalgraph = []
# # Method name column
# auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
# # For each model-task-intervention combination
# for task in TasksMib_Causalgraph:
# for model in task.value.models:
# for intervention in task.value.interventions:
# col_name = f"{model}_{task.value.benchmark}_{intervention}".lower()
# auto_eval_column_dict_mib_causalgraph.append([
# col_name,
# ColumnContent,
# ColumnContent(col_name, "number", True)
# ])
# auto_eval_column_dict_mib_causalgraph = []
# # Method name column
# auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
# # For each model-task-intervention combination
# for task in TasksMib_Causalgraph:
# for model in task.value.models:
# model_name = model.lower() # Convert model name to lowercase
# for layer in task.value.layers:
# for intervention in task.value.interventions:
# for counterfactual in task.value.counterfactuals:
# # Include model name in the column name
# col_name = f"{model_name}_layer{layer}_{intervention}_{counterfactual}"
# field_name = col_name.lower()
# auto_eval_column_dict_mib_causalgraph.append([
# field_name,
# ColumnContent,
# ColumnContent(col_name, "number", True)
# ])
# # In utils.py, modify auto_eval_column_dict_mib_causalgraph:
# auto_eval_column_dict_mib_causalgraph = []
# # Method name column
# auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
# # For each model-task-intervention-counterfactual combination
# for task in TasksMib_Causalgraph:
# for model in ["qwen2forcausallm", "gemma2forcausallm", "llamaforcausallm"]: # exact model names
# for layer in task.value.layers:
# for intervention in task.value.interventions:
# for counterfactual in task.value.counterfactuals:
# # Match the exact format from the data
# col_name = f"{model}_layer{layer}_{intervention}_{counterfactual}".lower()
# auto_eval_column_dict_mib_causalgraph.append([
# col_name,
# ColumnContent,
# ColumnContent(col_name, "number", True)
# ])
auto_eval_column_dict_mib_causalgraph = []
# Method name column
auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
# Add eval_name column
auto_eval_column_dict_mib_causalgraph.append(["eval_name", ColumnContent, ColumnContent("eval_name", "str", True)])
# For each model-task-intervention-counterfactual combination
for task in TasksMib_Causalgraph:
for model in task.value.models: # Use exact model names with correct casing
model_name = model # Don't convert to lowercase
for layer in task.value.layers:
for intervention in task.value.interventions:
for counterfactual in task.value.counterfactuals:
# Match exact format from the actual data
col_name = f"{model_name}_layer{layer}_{intervention}_{counterfactual}"
# Use the exact column name as both the field name and display name
auto_eval_column_dict_mib_causalgraph.append([
col_name,
ColumnContent,
ColumnContent(col_name, "number", True)
])
# Create the dataclass
AutoEvalColumn_mib_causalgraph = make_dataclass(
"AutoEvalColumn_mib_causalgraph",
auto_eval_column_dict_mib_causalgraph,
frozen=True
)
# Column selection for display
COLS_MIB_CAUSALGRAPH = [c.name for c in fields(AutoEvalColumn_mib_causalgraph) if not c.hidden]
BENCHMARK_COLS_MIB_CAUSALGRAPH = [f"{model}_{task.value.benchmark}_{intervention}".lower()
for task in TasksMib_Causalgraph
for model in task.value.models
for intervention in task.value.interventions]
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
track = ColumnContent("track", "str", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
COLS_MULTIMODAL = [c.name for c in fields(AutoEvalColumnMultimodal) if not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
BENCHMARK_COLS_MULTIMODAL = [t.value.col_name for t in TasksMultimodal]
TEXT_TASKS = {
"glue": ["cola", "sst2", "mrpc", "qqp", "mnli", "mnli-mm", "qnli", "rte",
"boolq", "multirc", "wsc"],
# Lots of BLiMP tasks – use verifier function below to see if you've included everything.
"blimp": ["adjunct_island","anaphor_gender_agreement","anaphor_number_agreement","animate_subject_passive","animate_subject_trans",
"causative","complex_NP_island","coordinate_structure_constraint_complex_left_branch","coordinate_structure_constraint_object_extraction","determiner_noun_agreement_1",
"determiner_noun_agreement_2","determiner_noun_agreement_irregular_1","determiner_noun_agreement_irregular_2","determiner_noun_agreement_with_adjective_1",
"determiner_noun_agreement_with_adj_2","determiner_noun_agreement_with_adj_irregular_1","determiner_noun_agreement_with_adj_irregular_2","distractor_agreement_relational_noun",
"distractor_agreement_relative_clause","drop_argument","ellipsis_n_bar_1","ellipsis_n_bar_2",
"existential_there_object_raising", "existential_there_quantifiers_1",
"existential_there_quantifiers_2", "existential_there_subject_raising", "expletive_it_object_raising",
"inchoative", "intransitive","irregular_past_participle_adjectives", "irregular_past_participle_verbs",
"irregular_plural_subject_verb_agreement_1", "irregular_plural_subject_verb_agreement_2", "left_branch_island_echo_question", "left_branch_island_simple_question",
"matrix_question_npi_licensor_present", "npi_present_1", "npi_present_2", "only_npi_licensor_present", "only_npi_scope", "passive_1", "passive_2",
"principle_A_case_1", "principle_A_case_2", "principle_A_c_command", "principle_A_domain_1",
"principle_A_domain_2", "principle_A_domain_3", "principle_A_reconstruction", "regular_plural_subject_verb_agreement_1",
"regular_plural_subject_verb_agreement_2", "sentential_negation_npi_licensor_present", "sentential_negation_npi_scope", "sentential_subject_island",
"superlative_quantifiers_1", "superlative_quantifiers_2", "tough_vs_raising_1", "tough_vs_raising_2",
"transitive", "wh_island", "wh_questions_object_gap", "wh_questions_subject_gap",
"wh_questions_subject_gap_long_distance", "wh_vs_that_no_gap", "wh_vs_that_no_gap_long_distance", "wh_vs_that_with_gap",
"wh_vs_that_with_gap_long_distance"
],
"blimp_supplement": ["hypernym", "qa_congruence_easy", "qa_congruence_tricky",
"subject_aux_inversion", "turn_taking"],
"ewok": ["agent-properties", "material-dynamics", "material-properties", "physical-dynamics",
"physical-interactions", "physical-relations", "quantitative-properties",
"social-interactions", "social-properties", "social-relations", "spatial-relations"]
}
VISION_TASKS = {
"vqa": ["vqa"],
"winoground": ["winoground"],
"devbench": ["lex-viz_vocab", "gram-trog", "sem-things"]
}
NUM_EXPECTED_EXAMPLES = {
"glue": {
"cola": 522,
"sst2": 436,
"mrpc": 204,
"qqp": 20215,
"mnli": 4908,
"mnli-mm": 4916,
"qnli": 2732,
"rte": 139,
"boolq": 1635,
"multirc": 2424,
"wsc": 52
},
"blimp": {
"adjunct_island": 928,
"anaphor_gender_agreement": 971,
"anaphor_number_agreement": 931,
"animate_subject_passive": 895,
"animate_subject_trans": 923,
"causative": 818,
"complex_NP_island": 846,
"coordinate_structure_constraint_complex_left_branch": 906,
"coordinate_structure_constraint_object_extraction": 949,
"determiner_noun_agreement_1": 929,
"determiner_noun_agreement_2": 931,
"determiner_noun_agreement_irregular_1": 681,
"determiner_noun_agreement_irregular_2": 820,
"determiner_noun_agreement_with_adjective_1": 933,
"determiner_noun_agreement_with_adj_2": 941,
"determiner_noun_agreement_with_adj_irregular_1": 718,
"determiner_noun_agreement_with_adj_irregular_2": 840,
"distractor_agreement_relational_noun": 788,
"distractor_agreement_relative_clause": 871,
"drop_argument": 920,
"ellipsis_n_bar_1": 802,
"ellipsis_n_bar_2": 828,
"existential_there_object_raising": 812,
"existential_there_quantifiers_1": 930,
"existential_there_quantifiers_2": 911,
"existential_there_subject_raising": 924,
"expletive_it_object_raising": 759,
"inchoative": 855,
"intransitive": 868,
"irregular_past_participle_adjectives": 961,
"irregular_past_participle_verbs": 942,
"irregular_plural_subject_verb_agreement_1": 804,
"irregular_plural_subject_verb_agreement_2": 892,
"left_branch_island_echo_question": 947,
"left_branch_island_simple_question": 951,
"matrix_question_npi_licensor_present": 929,
"npi_present_1": 909,
"npi_present_2": 914,
"only_npi_licensor_present": 882,
"only_npi_scope": 837,
"passive_1": 840,
"passive_2": 903,
"principle_A_case_1": 912,
"principle_A_case_2": 915,
"principle_A_c_command": 946,
"principle_A_domain_1": 914,
"principle_A_domain_2": 915,
"principle_A_domain_3": 941,
"principle_A_reconstruction": 967,
"regular_plural_subject_verb_agreement_1": 890,
"regular_plural_subject_verb_agreement_2": 945,
"sentential_negation_npi_licensor_present": 919,
"sentential_negation_npi_scope": 871,
"sentential_subject_island": 961,
"superlative_quantifiers_1": 979,
"superlative_quantifiers_2": 986,
"tough_vs_raising_1": 948,
"tough_vs_raising_2": 920,
"transitive": 868,
"wh_island": 960,
"wh_questions_object_gap": 859,
"wh_questions_subject_gap": 898,
"wh_questions_subject_gap_long_distance": 857,
"wh_vs_that_no_gap": 861,
"wh_vs_that_no_gap_long_distance": 875,
"wh_vs_that_with_gap": 919,
"wh_vs_that_with_gap_long_distance": 910
},
"blimp_supplement": {
"hypernym": 842,
"qa_congruence_easy": 64,
"qa_congruence_tricky": 165,
"subject_aux_inversion": 3867,
"turn_taking": 280
},
"ewok": {
"agent-properties": 2210,
"material-dynamics": 770,
"material-properties": 170,
"physical-dynamics": 120,
"physical-interactions": 556,
"physical-relations": 818,
"quantitative-properties": 314,
"social-interactions": 294,
"social-properties": 328,
"social-relations": 1548,
"spatial-relations": 490
},
"vqa": {
"vqa": 25230
},
"winoground": {
"winoground": 746
},
"devbench": {
"lex-viz_vocab": 119,
"gram-trog": 76,
"sem-things": 1854
}
} |