File size: 11,042 Bytes
32dbb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a05116
32dbb08
 
 
ce5dc65
32dbb08
 
 
 
 
ce5dc65
32dbb08
 
 
 
 
 
 
 
 
ce5dc65
 
 
 
 
 
 
 
 
32dbb08
 
 
 
 
 
 
 
 
985478d
cd60bd0
 
 
 
 
 
 
c57e76c
32dbb08
 
 
a782a90
32dbb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b348eb5
bcb3085
 
 
89d229d
bcb3085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d788e14
bcb3085
 
 
 
 
 
 
b348eb5
 
 
 
89d229d
b348eb5
 
 
 
 
 
 
 
 
 
bcb3085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b348eb5
 
bcb3085
 
 
 
b348eb5
 
 
89d229d
b348eb5
 
89d229d
b348eb5
 
 
 
 
 
 
 
 
 
32dbb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a782a90
b348eb5
32dbb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import json
import gzip
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from io import StringIO

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    BENCHMARK_COLS_MULTIMODAL,
    BENCHMARK_COLS_MIB,
    COLS,
    COLS_MIB,
    COLS_MULTIMODAL,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    AutoEvalColumn_mib,
    fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib
from src.submission.submit import add_new_eval



def restart_space():
    API.restart_space(repo_id=REPO_ID)



### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()

# print("EVAL_RESULTS_PATH")
# try:
#     print(EVAL_RESULTS_PATH)
#     snapshot_download(
#         repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()


try:
    print(RESULTS_REPO_MIB_SUBGRAPH)
    snapshot_download(
        repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


try:
    print(RESULTS_REPO_MIB_CAUSALGRAPH)
    snapshot_download(
        repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()



LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB, BENCHMARK_COLS_MIB)
LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB, BENCHMARK_COLS_MIB)

# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


def init_leaderboard_mib(dataframe, track):
    print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
    
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    # filter for correct track
    # dataframe = dataframe.loc[dataframe["Track"] == track]

    print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn_mib)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn_mib) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn_mib) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=["Method"],  # Changed from AutoEvalColumn_mib.model.name to "Method"
        hide_columns=[c.name for c in fields(AutoEvalColumn_mib) if c.hidden],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


def calculate_best_layer_scores(task_data: Dict[str, Any]) -> Dict[str, float]:
    """
    Calculate the best scores across layers for output token and location
    
    Args:
        task_data: Dictionary containing task scores for different layers
        
    Returns:
        Dictionary with best scores and corresponding layer
    """
    output_token_scores = [layer_data['output_token'] for layer_data in task_data.values()]
    output_location_scores = [layer_data['output_location'] for layer_data in task_data.values()]
    
    best_output_token = max(output_token_scores)
    best_output_location = max(output_location_scores)
    
    # Find the layer with the best combined performance
    layer_scores = [(layer, layer_data['output_token'] + layer_data['output_location']) 
                   for layer, layer_data in task_data.items()]
    best_layer = max(layer_scores, key=lambda x: x[1])[0]
    
    return {
        'output_token': best_output_token,
        'output_location': best_output_location,
        'best_layer': int(best_layer)
    }

def process_single_method(json_data: Dict[str, Any]) -> List[Dict[str, Any]]:
    """
    Process results for a single method into summary rows
    
    Args:
        json_data: Dictionary containing results for one method
        
    Returns:
        List of summary rows for the method
    """
    summary_rows = []
    method_name = json_data['method_name']
    
    for model_result in json_data['results']:
        model_id = model_result['model_id']
        task_data = model_result['task_scores']['MCQA']
        
        best_scores = calculate_best_layer_scores(task_data)
        
        summary_row = {
            'Method': method_name,
            'Model': model_id,
            'Best Output Token Score': best_scores['output_token'],
            'Best Output Location Score': best_scores['output_location'],
            'Best Layer': best_scores['best_layer']
        }
        summary_rows.append(summary_row)
    
    return summary_rows

def init_leaderboard_mib_causal(json_data_list: List[Dict[str, Any]], track: str) -> 'Leaderboard':
    """
    Creates a leaderboard summary for causal intervention results from multiple methods
    
    Args:
        json_data_list: List of dictionaries containing results for different methods
        track: Track identifier (currently unused but maintained for compatibility)
        
    Returns:
        Leaderboard object containing processed and formatted results
    """
    # Process all methods
    all_summary_data = []
    for method_data in json_data_list:
        method_summary = process_single_method(method_data)
        all_summary_data.extend(method_summary)
    
    # Convert to DataFrame
    results_df = pd.DataFrame(all_summary_data)
    
    # Sort by best score (using output token score as primary metric)
    results_df = results_df.sort_values('Best Output Token Score', ascending=False)
    
    # Round numeric columns to 3 decimal places
    numeric_cols = ['Best Output Token Score', 'Best Output Location Score']
    results_df[numeric_cols] = results_df[numeric_cols].round(3)
    
    return Leaderboard(
        value=results_df,
        datatype=['text', 'text', 'number', 'number', 'number'],
        select_columns=SelectColumns(
            default_selection=['Method', 'Model', 'Best Output Token Score', 'Best Output Location Score', 'Best Layer'],
            cant_deselect=['Method', 'Model'],
            label="Select Metrics to Display:",
        ),
        search_columns=['Method', 'Model'],
        interactive=False,
    )

def init_leaderboard(dataframe, track):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    # filter for correct track
    dataframe = dataframe.loc[dataframe["Track"] == track]

    # print(f"\n\n\n dataframe is {dataframe}\n\n\n")
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )

def process_json(temp_file):
    if temp_file is None:
        return {}

    # Handle file upload
    try:
        file_path = temp_file.name
        if file_path.endswith('.gz'):
            with gzip.open(file_path, 'rt') as f:
                data = json.load(f)
        else:
            with open(file_path, 'r') as f:
                data = json.load(f)
    except Exception as e:
        raise gr.Error(f"Error processing file: {str(e)}")

    gr.Markdown("Upload successful!")
    return data


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF, "strict")
        # with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small")
        # with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal")

        # with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=4):
        #     gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
 
        # with gr.TabItem("πŸ‘Ά Submit", elem_id="llm-benchmark-tab-table", id=5):
        #     with gr.Column():
        #         with gr.Row():                                                                                                           
        #             gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
        
        with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
            leaderboard = init_leaderboard_mib(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
            # leaderboard = init_leaderboard_mib(LEADERBOARD_DF, "mib")
        
        with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1):
            leaderboard = init_leaderboard_mib_causal(LEADERBOARD_DF_MIB_CAUSALGRAPH, "Causal Graph")
        
    # with gr.Row():
    #     with gr.Accordion("πŸ“™ Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch(share=True, ssr_mode=False)