Spaces:
Running
Running
File size: 11,042 Bytes
32dbb08 6a05116 32dbb08 ce5dc65 32dbb08 ce5dc65 32dbb08 ce5dc65 32dbb08 985478d cd60bd0 c57e76c 32dbb08 a782a90 32dbb08 b348eb5 bcb3085 89d229d bcb3085 d788e14 bcb3085 b348eb5 89d229d b348eb5 bcb3085 b348eb5 bcb3085 b348eb5 89d229d b348eb5 89d229d b348eb5 32dbb08 a782a90 b348eb5 32dbb08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import json
import gzip
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from io import StringIO
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
BENCHMARK_COLS_MULTIMODAL,
BENCHMARK_COLS_MIB,
COLS,
COLS_MIB,
COLS_MULTIMODAL,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
AutoEvalColumn_mib,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
# print("EVAL_RESULTS_PATH")
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
# )
# except Exception:
# restart_space()
try:
print(RESULTS_REPO_MIB_SUBGRAPH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(RESULTS_REPO_MIB_CAUSALGRAPH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB, BENCHMARK_COLS_MIB)
LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB, BENCHMARK_COLS_MIB)
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard_mib(dataframe, track):
print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# filter for correct track
# dataframe = dataframe.loc[dataframe["Track"] == track]
print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn_mib)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn_mib) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn_mib) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=["Method"], # Changed from AutoEvalColumn_mib.model.name to "Method"
hide_columns=[c.name for c in fields(AutoEvalColumn_mib) if c.hidden],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def calculate_best_layer_scores(task_data: Dict[str, Any]) -> Dict[str, float]:
"""
Calculate the best scores across layers for output token and location
Args:
task_data: Dictionary containing task scores for different layers
Returns:
Dictionary with best scores and corresponding layer
"""
output_token_scores = [layer_data['output_token'] for layer_data in task_data.values()]
output_location_scores = [layer_data['output_location'] for layer_data in task_data.values()]
best_output_token = max(output_token_scores)
best_output_location = max(output_location_scores)
# Find the layer with the best combined performance
layer_scores = [(layer, layer_data['output_token'] + layer_data['output_location'])
for layer, layer_data in task_data.items()]
best_layer = max(layer_scores, key=lambda x: x[1])[0]
return {
'output_token': best_output_token,
'output_location': best_output_location,
'best_layer': int(best_layer)
}
def process_single_method(json_data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Process results for a single method into summary rows
Args:
json_data: Dictionary containing results for one method
Returns:
List of summary rows for the method
"""
summary_rows = []
method_name = json_data['method_name']
for model_result in json_data['results']:
model_id = model_result['model_id']
task_data = model_result['task_scores']['MCQA']
best_scores = calculate_best_layer_scores(task_data)
summary_row = {
'Method': method_name,
'Model': model_id,
'Best Output Token Score': best_scores['output_token'],
'Best Output Location Score': best_scores['output_location'],
'Best Layer': best_scores['best_layer']
}
summary_rows.append(summary_row)
return summary_rows
def init_leaderboard_mib_causal(json_data_list: List[Dict[str, Any]], track: str) -> 'Leaderboard':
"""
Creates a leaderboard summary for causal intervention results from multiple methods
Args:
json_data_list: List of dictionaries containing results for different methods
track: Track identifier (currently unused but maintained for compatibility)
Returns:
Leaderboard object containing processed and formatted results
"""
# Process all methods
all_summary_data = []
for method_data in json_data_list:
method_summary = process_single_method(method_data)
all_summary_data.extend(method_summary)
# Convert to DataFrame
results_df = pd.DataFrame(all_summary_data)
# Sort by best score (using output token score as primary metric)
results_df = results_df.sort_values('Best Output Token Score', ascending=False)
# Round numeric columns to 3 decimal places
numeric_cols = ['Best Output Token Score', 'Best Output Location Score']
results_df[numeric_cols] = results_df[numeric_cols].round(3)
return Leaderboard(
value=results_df,
datatype=['text', 'text', 'number', 'number', 'number'],
select_columns=SelectColumns(
default_selection=['Method', 'Model', 'Best Output Token Score', 'Best Output Location Score', 'Best Layer'],
cant_deselect=['Method', 'Model'],
label="Select Metrics to Display:",
),
search_columns=['Method', 'Model'],
interactive=False,
)
def init_leaderboard(dataframe, track):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# filter for correct track
dataframe = dataframe.loc[dataframe["Track"] == track]
# print(f"\n\n\n dataframe is {dataframe}\n\n\n")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def process_json(temp_file):
if temp_file is None:
return {}
# Handle file upload
try:
file_path = temp_file.name
if file_path.endswith('.gz'):
with gzip.open(file_path, 'rt') as f:
data = json.load(f)
else:
with open(file_path, 'r') as f:
data = json.load(f)
except Exception as e:
raise gr.Error(f"Error processing file: {str(e)}")
gr.Markdown("Upload successful!")
return data
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0):
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict")
# with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1):
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small")
# with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2):
# leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal")
# with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("πΆ Submit", elem_id="llm-benchmark-tab-table", id=5):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
leaderboard = init_leaderboard_mib(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
# leaderboard = init_leaderboard_mib(LEADERBOARD_DF, "mib")
with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1):
leaderboard = init_leaderboard_mib_causal(LEADERBOARD_DF_MIB_CAUSALGRAPH, "Causal Graph")
# with gr.Row():
# with gr.Accordion("π Citation", open=False):
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# lines=20,
# elem_id="citation-button",
# show_copy_button=True,
# )
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch(share=True, ssr_mode=False)
|