Spaces:
Running
Running
File size: 6,636 Bytes
2fc77f5 e46e945 2817fcb e46e945 e27c948 b56a213 4780a48 b56a213 4780a48 e46e945 36438b0 56d1796 4780a48 56d1796 b56a213 4780a48 b56a213 4780a48 b56a213 e46e945 7086c8a 4780a48 e46e945 2fc77f5 b624a39 2fc77f5 b624a39 2fc77f5 b624a39 2fc77f5 b624a39 2fc77f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
from dataclasses import dataclass
from enum import Enum
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
# Select your tasks here
# ---------------------------------------------------
class Tasks(Enum):
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
task0 = Task("blimp", "acc", "BLiMP")
task1 = Task("blimp_supplement", "acc", "BLiMP Supplement")
task2 = Task("glue", "acc", "(Super)GLUE")
task3 = Task("ewok", "acc", "EWoK")
class TasksMultimodal(Enum):
task0 = Task("blimp", "acc", "BLiMP")
task1 = Task("blimp_supplement", "acc", "BLiMP Supplement")
task2 = Task("glue", "acc", "(Super)GLUE")
task3 = Task("ewok", "acc", "EWoK")
task4 = Task("vqa", "acc", "VQA")
task5 = Task("winoground", "acc", "Winoground")
task6 = Task("devbench", "acc", "DevBench")
@dataclass
class TaskMIB_Subgraph:
benchmark: str # task name in json (ioi/arithmetic)
models: list[str] # list of models to show as sub-columns
col_name: str # display name in leaderboard
metrics: list[str] # metrics to store (edge_counts, faithfulness)
class TasksMib_Subgraph(Enum):
task0 = TaskMIB_Subgraph("ioi", ["gpt2", "qwen2_5", "gemma2", "llama3"], "IOI", ["edge_counts", "faithfulness"])
task1 = TaskMIB_Subgraph("mcqa", ["qwen2_5", "gemma2", "llama3"], "MCQA", ["edge_counts", "faithfulness"])
task2 = TaskMIB_Subgraph("arithmetic_addition", ["llama3"], "arithmetic_addition", ["edge_counts", "faithfulness"])
task3 = TaskMIB_Subgraph("arithmetic_subtraction", ["llama3"], "arithmetic_subtraction", ["edge_counts", "faithfulness"])
task4 = TaskMIB_Subgraph("arc_easy", ["gemma2", "llama3"], "arc_easy", ["edge_counts", "faithfulness"])
task5 = TaskMIB_Subgraph("arc_challenge", ["llama3"], "arc_challenge", ["edge_counts", "faithfulness"])
@classmethod
def get_all_tasks(cls):
"""Returns a list of all task benchmarks"""
return [task.value.benchmark for task in cls]
@classmethod
def get_all_models(cls):
"""Returns a list of all unique models across all tasks"""
models = set()
for task in cls:
models.update(task.value.models)
return sorted(list(models))
# @dataclass
# class TaskMIB_Causalgraph:
# benchmark: str
# models: list[str]
# layers: dict[str, list[str]] # Different layers for each model
# col_name: str
# interventions: list[str]
# counterfactuals: list[str]
# metrics: list[str]
# class TasksMib_Causalgraph(Enum):
# task0 = TaskMIB_Causalgraph("MCQA",
# ["qwen2forcausallm", "gemma2forcausallm", "llamaforcausallm"],
# {
# "qwen2forcausallm": [str(i) for i in range(24)], # 0-23
# "gemma2forcausallm": [str(i) for i in range(26)], # 0-25
# "llamaforcausallm": [str(i) for i in range(32)] # 0-31
# },
# "mcqa",
# ["output_token", "output_location"],
# ["randomLetter_counterfactual", "answerPosition_counterfactual",
# "answerPosition_randomLetter_counterfactual"],
# ["score"]
# )
@dataclass
class TaskMIB_Causalgraph:
benchmark: str # task name in json (ioi/arithmetic)
models: list[str] # list of models to show as sub-columns
col_name: str # display name in leaderboard
metrics: list[str] # metrics to store (average_score)
class TasksMib_Causalgraph(Enum):
task0 = TaskMIB_Subgraph("ioi", ["GPT2ForCausalLM"], "IOI", ["average_score"])
task1 = TaskMIB_Subgraph("mcqa", ["Qwen2ForCausalLM", "Gemma2ForCausalLM", "LlamaForCausalLM"], "MCQA", ["average_score"])
task2 = TaskMIB_Subgraph("arithmetic_addition", ["Gemma2ForCausalLM", "LlamaForCausalLM"], "arithmetic_addition", ["average_score"])
task3 = TaskMIB_Subgraph("arc_easy", ["Gemma2ForCausalLM", "LlamaForCausalLM"], "arc_easy", ["average_score"])
@classmethod
def get_all_tasks(cls):
"""Returns a list of all task benchmarks"""
return [task.value.benchmark for task in cls]
@classmethod
def get_all_models(cls):
"""Returns a list of all unique models across all tasks"""
models = set()
for task in cls:
models.update(task.value.models)
return sorted(list(models))
NUM_FEWSHOT = 0 # Change with your few shot
# ---------------------------------------------------
# Your leaderboard name
TITLE = """<h1 align="center" id="space-title"> Mechanistic Interpretability Benchmark 2024 Leaderboards</h1>"""
# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
The leaderboards for each track of the 2024 Mechanistic Interpretability Benchmark.
"""
# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = f"""
This leaderboard displays scores from the 2024 BabyLM Challenge. Each track has its own tab.
"""
EVALUATION_QUEUE_TEXT = """
## Circuit localization track:
You'll need 10 circuits per task/model combination. For each critical threshold k and previous threshold k_-1,
the circuit should contain no fewer than k_-1% of components, and no more than k% of components. Create a HuggingFace
dataset or model repository; this will house your circuits. Make a folder where the circuits (and *only* the circuits)
are contained. Do not worry about the ordering of the files; our evaluation script will read the circuits and sort them
by size. Provide a link to this folder below.
For specifications about the file format for a circuit, see the README on our project GitHub: TODO
Once your model makes it to the front of the evaluation queue, we'll submit your model for evaluation on the private test set.
The evaluations are handled by the National Deep Inference Framework (NDIF).
## Causal variable localization track:
"""
CITATION_BUTTON_LABEL = "If you would like to cite these results, please cite the 2024 BabyLM Findings paper, as well as the authors of the model(s) whose results you cite!"
CITATION_BUTTON_TEXT = r"""
@article{hu2024findingssecondbabylmchallenge,
title={Findings of the Second BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora},
author={Michael Y. Hu and Aaron Mueller and Candace Ross and Adina Williams and Tal Linzen and Chengxu Zhuang and Ryan Cotterell and Leshem Choshen and Alex Warstadt and Ethan Gotlieb Wilcox},
year={2024},
journal={Computing Research Repository},
volume={arXiv:2412.05149},
url={https://arxiv.org/abs/2412.05149},
}
""" |