File size: 22,422 Bytes
2fc77f5
 
 
 
 
e46e945
2fc77f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e46e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fc77f5
 
a90efab
 
2fc77f5
9fd4b06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a90efab
5b3b90b
 
 
2fc77f5
5b3b90b
 
2fc77f5
5b3b90b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd4b06
5b3b90b
 
 
 
 
 
 
 
 
2fc77f5
5b3b90b
 
2fc77f5
 
a90efab
 
f732437
a90efab
f732437
 
 
 
a90efab
f732437
a90efab
 
009db1f
f732437
 
53c242a
 
 
 
 
a90efab
53c242a
f732437
53c242a
a90efab
 
f732437
 
 
 
 
53c242a
f732437
 
a90efab
 
 
 
 
9fd4b06
 
 
 
2fc77f5
5dd7582
2fc77f5
 
61542b8
2fc77f5
5dd7582
 
06e8556
2fc77f5
 
5dd7582
2fc77f5
5dd7582
61542b8
 
 
2fc77f5
 
a100ebc
 
 
 
9fd4b06
 
 
 
 
 
53c7136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ed00c5
f65df62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29701ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b56a213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eaca05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4493851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e46e945
 
4493851
e46e945
531005f
f65df62
e46e945
4493851
1eaca05
53c7136
 
b56a213
53c7136
753260a
53c7136
 
 
 
a100ebc
531005f
 
 
 
 
e46e945
531005f
e46e945
531005f
 
a100ebc
e46e945
 
a100ebc
e46e945
 
 
 
 
 
 
2fc77f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks, TasksMultimodal, TasksMib_Subgraph, TasksMib_Causalgraph

def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False

## Leaderboard columns
auto_eval_column_dict = []
auto_eval_column_dict_multimodal = []

auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["hf_repo", ColumnContent, ColumnContent("HF Repo", "str", False)])
auto_eval_column_dict.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)])
#Scores
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])

auto_eval_column_dict_multimodal.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict_multimodal.append(["hf_repo", ColumnContent, ColumnContent("HF Repo", "str", False)])
auto_eval_column_dict_multimodal.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)])
for task in TasksMultimodal:
    auto_eval_column_dict_multimodal.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
    if task.value.col_name in ("ewok", "EWoK"):   # make sure this appears in the right order
        auto_eval_column_dict_multimodal.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)])
auto_eval_column_dict_multimodal.append(["vision_average", ColumnContent, ColumnContent("Vision Average", "number", True)])
auto_eval_column_dict_multimodal.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict_multimodal.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])



AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
AutoEvalColumnMultimodal = make_dataclass("AutoEvalColumnMultimodal", auto_eval_column_dict_multimodal, frozen=True)








##############################################################################################################
# Version 1

# auto_eval_column_dict_mib_subgraph = []

# # Method name column
# auto_eval_column_dict_mib_subgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])

# # For each task and model combination
# for task in TasksMib_Subgraph:
#     for model in task.value.models:
#         col_name = f"{task.value.benchmark}_{model}"  # ioi_gpt2, mcqa_qwen2.5, etc.
#         auto_eval_column_dict_mib_subgraph.append([
#             col_name, 
#             ColumnContent, 
#             ColumnContent(col_name, "number", True)
#         ])

# # Average column
# auto_eval_column_dict_mib_subgraph.append(["average", ColumnContent, ColumnContent("Average", "number", True)])


# ##############################################################################################################
# # Version 2
# auto_eval_column_dict_mib_subgraph = []

# # Method name column
# auto_eval_column_dict_mib_subgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])

# # Add task filter column
# task_values = list(set(task.value.benchmark for task in TasksMib_Subgraph))
# auto_eval_column_dict_mib_subgraph.append(
#     ["task_filter", ColumnContent, ColumnContent("Task", "str", True, never_hidden=True)]
# )

# # Add model filter column
# model_values = list(set(
#     model 
#     for task in TasksMib_Subgraph 
#     for model in task.value.models
# ))
# auto_eval_column_dict_mib_subgraph.append(
#     ["model_filter", ColumnContent, ColumnContent("Model", "str", True, never_hidden=True)]
# )

# # For each task and model combination
# for task in TasksMib_Subgraph:
#     for model in task.value.models:
#         col_name = f"{task.value.benchmark}_{model}"
#         auto_eval_column_dict_mib_subgraph.append([
#             col_name, 
#             ColumnContent, 
#             ColumnContent(col_name, "number", True)
#         ])

# # Average column
# auto_eval_column_dict_mib_subgraph.append(["average", ColumnContent, ColumnContent("Average", "number", True)])


##############################################################################################################
# Version 3
auto_eval_column_dict_mib_subgraph = []

# Method name column (always present)
auto_eval_column_dict_mib_subgraph.append(
    ["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)]
)

# Add columns for each task-model combination
for task in TasksMib_Subgraph:
    for model in task.value.models:
        field_name = f"{task.value.benchmark}_{model}"
        display_name = f"{task.value.benchmark}({model})"
        
        print(f"Creating column - Field name: {field_name}, Display name: {display_name}")
        
        column_content = ColumnContent(display_name, "number", True)
        print(f"Column content name property: {column_content.name}")
        
        auto_eval_column_dict_mib_subgraph.append([
            field_name,
            ColumnContent,
            column_content
        ])

# Add the Average column
auto_eval_column_dict_mib_subgraph.append(
    ["average", ColumnContent, ColumnContent("Average", "number", True)]
)

print("\nFinal column configurations:")
for field in auto_eval_column_dict_mib_subgraph:
    print(f"Field name: {field[0]}, Display name: {field[2].name}")









# Create the dataclass for MIB columns
AutoEvalColumn_mib_subgraph = make_dataclass("AutoEvalColumn_mib_subgraph", auto_eval_column_dict_mib_subgraph, frozen=True)

# Column selection for display
COLS_MIB_SUBGRAPH = [c.name for c in fields(AutoEvalColumn_mib_subgraph) if not c.hidden]


BENCHMARK_COLS_MIB_SUBGRAPH = []
for task in TasksMib_Subgraph:
    for model in task.value.models:
        col_name = f"{task.value.col_name}_{model.replace('-', '_')}"
        BENCHMARK_COLS_MIB_SUBGRAPH.append(col_name)

# Implement the same for causal graph, auto_eval_column_dict_mib_causalgraph, AutoEvalColumn_mib_causalgraph
AutoEvalColumn_mib_causalgraph = []
COLS_MIB_CAUSALGRAPH = []
BENCHMARK_COLS_MIB_CAUSALGRAPH = []












# # Initialize the MIB causal graph columns
# auto_eval_column_dict_mib_causalgraph = []

# # Method name column
# auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])

# # For each model-task-intervention combination
# for task in TasksMib_Causalgraph:
#     for model in task.value.models:
#         for intervention in task.value.interventions:
#             col_name = f"{model}_{task.value.benchmark}_{intervention}".lower()
#             auto_eval_column_dict_mib_causalgraph.append([
#                 col_name, 
#                 ColumnContent, 
#                 ColumnContent(col_name, "number", True)
#             ])

# auto_eval_column_dict_mib_causalgraph = []

# # Method name column
# auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])

# # For each model-task-intervention combination
# for task in TasksMib_Causalgraph:
#     for model in task.value.models:
#         model_name = model.lower()  # Convert model name to lowercase
#         for layer in task.value.layers:
#             for intervention in task.value.interventions:
#                 for counterfactual in task.value.counterfactuals:
#                     # Include model name in the column name
#                     col_name = f"{model_name}_layer{layer}_{intervention}_{counterfactual}"
#                     field_name = col_name.lower()
#                     auto_eval_column_dict_mib_causalgraph.append([
#                         field_name, 
#                         ColumnContent, 
#                         ColumnContent(col_name, "number", True)
#                     ])

# # In utils.py, modify auto_eval_column_dict_mib_causalgraph:
# auto_eval_column_dict_mib_causalgraph = []

# # Method name column
# auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])

# # For each model-task-intervention-counterfactual combination
# for task in TasksMib_Causalgraph:
#     for model in ["qwen2forcausallm", "gemma2forcausallm", "llamaforcausallm"]:  # exact model names
#         for layer in task.value.layers:
#             for intervention in task.value.interventions:
#                 for counterfactual in task.value.counterfactuals:
#                     # Match the exact format from the data
#                     col_name = f"{model}_layer{layer}_{intervention}_{counterfactual}".lower()
#                     auto_eval_column_dict_mib_causalgraph.append([
#                         col_name, 
#                         ColumnContent, 
#                         ColumnContent(col_name, "number", True)
#                     ])




# auto_eval_column_dict_mib_causalgraph = []

# # Method name column
# auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])

# # Add eval_name column
# auto_eval_column_dict_mib_causalgraph.append(["eval_name", ColumnContent, ColumnContent("eval_name", "str", True)])

# # For each model-task-intervention-counterfactual combination
# for task in TasksMib_Causalgraph:
#     for model in task.value.models:  # Use exact model names with correct casing
#         model_name = model  # Don't convert to lowercase
#         for layer in task.value.layers:
#             for intervention in task.value.interventions:
#                 for counterfactual in task.value.counterfactuals:
#                     # Match exact format from the actual data
#                     col_name = f"{model_name}_layer{layer}_{intervention}_{counterfactual}"
#                     # Use the exact column name as both the field name and display name
#                     auto_eval_column_dict_mib_causalgraph.append([
#                         col_name, 
#                         ColumnContent, 
#                         ColumnContent(col_name, "number", True)
#                     ])



# auto_eval_column_dict_mib_causalgraph = []

# # Method name column
# auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
# auto_eval_column_dict_mib_causalgraph.append(["eval_name", ColumnContent, ColumnContent("eval_name", "str", True)])

# # For each model-task-intervention-counterfactual combination
# for task in TasksMib_Causalgraph:
#     for model in task.value.models:
#         for layer in task.value.layers[model]:  # Use model-specific layers
#             for intervention in task.value.interventions:
#                 for counterfactual in task.value.counterfactuals:
#                     col_name = f"{model}_layer{layer}_{intervention}_{counterfactual}"
#                     auto_eval_column_dict_mib_causalgraph.append([
#                         col_name, 
#                         ColumnContent, 
#                         ColumnContent(col_name, "number", True)
#                     ])

# auto_eval_column_dict_mib_causalgraph = []

# # Method name column
# auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
# auto_eval_column_dict_mib_causalgraph.append(["eval_name", ColumnContent, ColumnContent("eval_name", "str", True)])

# # For each model-task-intervention-counterfactual combination
# for task in TasksMib_Causalgraph:
#     for model in task.value.models:  # model will already be lowercase
#         for layer in task.value.layers[model]:
#             for intervention in task.value.interventions:
#                 for counterfactual in task.value.counterfactuals:
#                     # Use exactly the same format as in DataFrame
#                     col_name = f"{model}_layer{layer}_{intervention}_{counterfactual}"
#                     auto_eval_column_dict_mib_causalgraph.append([
#                         col_name, 
#                         ColumnContent, 
#                         ColumnContent(col_name, "number", True)
#                     ])

auto_eval_column_dict_mib_causalgraph = []

# Only include Method column as required
auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])

# For each model-task-intervention-counterfactual combination
for task in TasksMib_Causalgraph:
    for model in task.value.models:  # model will be lowercase
        for layer in task.value.layers[model]:
            for intervention in task.value.interventions:
                for counterfactual in task.value.counterfactuals:
                    col_name = f"{model}_layer{layer}_{intervention}_{counterfactual}"
                    auto_eval_column_dict_mib_causalgraph.append([
                        col_name, 
                        ColumnContent, 
                        ColumnContent(col_name, "number", True)
                    ])

# Create the dataclass
AutoEvalColumn_mib_causalgraph = make_dataclass(
    "AutoEvalColumn_mib_causalgraph", 
    auto_eval_column_dict_mib_causalgraph,
    frozen=True
)

# Column selection for display 
COLS_MIB_CAUSALGRAPH = [c.name for c in fields(AutoEvalColumn_mib_causalgraph) if not c.hidden]


BENCHMARK_COLS_MIB_CAUSALGRAPH = [f"{model}_{task.value.benchmark}_{intervention}".lower()
                                 for task in TasksMib_Causalgraph
                                 for model in task.value.models
                                 for intervention in task.value.interventions]





















## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    track = ColumnContent("track", "str", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    status = ColumnContent("status", "str", True)

## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji

# Column selection

COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
COLS_MULTIMODAL = [c.name for c in fields(AutoEvalColumnMultimodal) if not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]
BENCHMARK_COLS_MULTIMODAL = [t.value.col_name for t in TasksMultimodal]

TEXT_TASKS = {
    "glue": ["cola", "sst2", "mrpc", "qqp", "mnli", "mnli-mm", "qnli", "rte",
            "boolq", "multirc", "wsc"],
    # Lots of BLiMP tasks – use verifier function below to see if you've included everything.
    "blimp": ["adjunct_island","anaphor_gender_agreement","anaphor_number_agreement","animate_subject_passive","animate_subject_trans",
        "causative","complex_NP_island","coordinate_structure_constraint_complex_left_branch","coordinate_structure_constraint_object_extraction","determiner_noun_agreement_1",
        "determiner_noun_agreement_2","determiner_noun_agreement_irregular_1","determiner_noun_agreement_irregular_2","determiner_noun_agreement_with_adjective_1",
        "determiner_noun_agreement_with_adj_2","determiner_noun_agreement_with_adj_irregular_1","determiner_noun_agreement_with_adj_irregular_2","distractor_agreement_relational_noun",
        "distractor_agreement_relative_clause","drop_argument","ellipsis_n_bar_1","ellipsis_n_bar_2",
        "existential_there_object_raising", "existential_there_quantifiers_1",
        "existential_there_quantifiers_2", "existential_there_subject_raising", "expletive_it_object_raising",
        "inchoative", "intransitive","irregular_past_participle_adjectives", "irregular_past_participle_verbs",
        "irregular_plural_subject_verb_agreement_1", "irregular_plural_subject_verb_agreement_2", "left_branch_island_echo_question", "left_branch_island_simple_question",
        "matrix_question_npi_licensor_present", "npi_present_1", "npi_present_2", "only_npi_licensor_present", "only_npi_scope", "passive_1", "passive_2",
        "principle_A_case_1", "principle_A_case_2", "principle_A_c_command", "principle_A_domain_1",
        "principle_A_domain_2", "principle_A_domain_3", "principle_A_reconstruction", "regular_plural_subject_verb_agreement_1",
        "regular_plural_subject_verb_agreement_2", "sentential_negation_npi_licensor_present", "sentential_negation_npi_scope", "sentential_subject_island",
        "superlative_quantifiers_1", "superlative_quantifiers_2", "tough_vs_raising_1", "tough_vs_raising_2",
        "transitive", "wh_island", "wh_questions_object_gap", "wh_questions_subject_gap",
        "wh_questions_subject_gap_long_distance", "wh_vs_that_no_gap", "wh_vs_that_no_gap_long_distance", "wh_vs_that_with_gap",
        "wh_vs_that_with_gap_long_distance"
    ],
    "blimp_supplement": ["hypernym", "qa_congruence_easy", "qa_congruence_tricky",
                "subject_aux_inversion", "turn_taking"],
    "ewok": ["agent-properties", "material-dynamics", "material-properties", "physical-dynamics",
            "physical-interactions", "physical-relations", "quantitative-properties",
            "social-interactions", "social-properties", "social-relations", "spatial-relations"]
}

VISION_TASKS = {
    "vqa": ["vqa"],
    "winoground": ["winoground"],
    "devbench": ["lex-viz_vocab", "gram-trog", "sem-things"]
}

NUM_EXPECTED_EXAMPLES = {
    "glue": {
        "cola": 522,
        "sst2": 436,
        "mrpc": 204,
        "qqp": 20215,
        "mnli": 4908,
        "mnli-mm": 4916,
        "qnli": 2732,
        "rte": 139,
        "boolq": 1635,
        "multirc": 2424,
        "wsc": 52
    },
    "blimp": {
        "adjunct_island": 928,
        "anaphor_gender_agreement": 971,
        "anaphor_number_agreement": 931,
        "animate_subject_passive": 895,
        "animate_subject_trans": 923,
        "causative": 818,
        "complex_NP_island": 846,
        "coordinate_structure_constraint_complex_left_branch": 906,
        "coordinate_structure_constraint_object_extraction": 949,
        "determiner_noun_agreement_1": 929,
        "determiner_noun_agreement_2": 931,
        "determiner_noun_agreement_irregular_1": 681,
        "determiner_noun_agreement_irregular_2": 820,
        "determiner_noun_agreement_with_adjective_1": 933,
        "determiner_noun_agreement_with_adj_2": 941,
        "determiner_noun_agreement_with_adj_irregular_1": 718,
        "determiner_noun_agreement_with_adj_irregular_2": 840,
        "distractor_agreement_relational_noun": 788,
        "distractor_agreement_relative_clause": 871,
        "drop_argument": 920,
        "ellipsis_n_bar_1": 802,
        "ellipsis_n_bar_2": 828,
        "existential_there_object_raising": 812,
        "existential_there_quantifiers_1": 930,
        "existential_there_quantifiers_2": 911,
        "existential_there_subject_raising": 924,
        "expletive_it_object_raising": 759,
        "inchoative": 855,
        "intransitive": 868,
        "irregular_past_participle_adjectives": 961,
        "irregular_past_participle_verbs": 942,
        "irregular_plural_subject_verb_agreement_1": 804,
        "irregular_plural_subject_verb_agreement_2": 892,
        "left_branch_island_echo_question": 947,
        "left_branch_island_simple_question": 951,
        "matrix_question_npi_licensor_present": 929,
        "npi_present_1": 909,
        "npi_present_2": 914,
        "only_npi_licensor_present": 882,
        "only_npi_scope": 837,
        "passive_1": 840,
        "passive_2": 903,
        "principle_A_case_1": 912,
        "principle_A_case_2": 915,
        "principle_A_c_command": 946,
        "principle_A_domain_1": 914,
        "principle_A_domain_2": 915,
        "principle_A_domain_3": 941,
        "principle_A_reconstruction": 967,
        "regular_plural_subject_verb_agreement_1": 890,
        "regular_plural_subject_verb_agreement_2": 945,
        "sentential_negation_npi_licensor_present": 919,
        "sentential_negation_npi_scope": 871,
        "sentential_subject_island": 961,
        "superlative_quantifiers_1": 979,
        "superlative_quantifiers_2": 986,
        "tough_vs_raising_1": 948,
        "tough_vs_raising_2": 920,
        "transitive": 868,
        "wh_island": 960,
        "wh_questions_object_gap": 859,
        "wh_questions_subject_gap": 898,
        "wh_questions_subject_gap_long_distance": 857,
        "wh_vs_that_no_gap": 861,
        "wh_vs_that_no_gap_long_distance": 875,
        "wh_vs_that_with_gap": 919,
        "wh_vs_that_with_gap_long_distance": 910
    },
    "blimp_supplement": {
        "hypernym": 842,
        "qa_congruence_easy": 64,
        "qa_congruence_tricky": 165,
        "subject_aux_inversion": 3867,
        "turn_taking": 280
    },
    "ewok": {
        "agent-properties": 2210,
        "material-dynamics": 770,
        "material-properties": 170,
        "physical-dynamics": 120,
        "physical-interactions": 556,
        "physical-relations": 818,
        "quantitative-properties": 314,
        "social-interactions": 294,
        "social-properties": 328,
        "social-relations": 1548,
        "spatial-relations": 490
    },
    "vqa": {
        "vqa": 25230
    },
    "winoground": {
        "winoground": 746
    },
    "devbench": {
        "lex-viz_vocab": 119,
        "gram-trog": 76,
        "sem-things": 1854
    }
}