Spaces:
Running
Running
File size: 6,540 Bytes
2fc77f5 3c343e0 2fc77f5 e46e945 3c343e0 e46e945 3c343e0 e46e945 a90efab 09666ed a90efab 09666ed a90efab 09666ed f732437 09666ed 53c242a 09666ed 53c242a 09666ed a90efab 09666ed f732437 09666ed a90efab 2fc77f5 5dd7582 2fc77f5 61542b8 2fc77f5 5dd7582 06e8556 2fc77f5 5dd7582 2fc77f5 5dd7582 61542b8 2fc77f5 e46e945 4493851 e46e945 531005f f65df62 e46e945 4493851 4780a48 53c7136 a100ebc 531005f e46e945 2fc77f5 e1faa87 5ed4bca 2fc77f5 11e2149 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import Tasks, TasksMib_Subgraph, TasksMib_Causalgraph
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
auto_eval_column_dict_multimodal = []
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["hf_repo", ColumnContent, ColumnContent("HF Repo", "str", False)])
auto_eval_column_dict.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)])
#Scores
# for task in Tasks:
# auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
auto_eval_column_dict_multimodal.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict_multimodal.append(["hf_repo", ColumnContent, ColumnContent("HF Repo", "str", False)])
auto_eval_column_dict_multimodal.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)])
# for task in TasksMultimodal:
# auto_eval_column_dict_multimodal.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# if task.value.col_name in ("ewok", "EWoK"): # make sure this appears in the right order
# auto_eval_column_dict_multimodal.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)])
auto_eval_column_dict_multimodal.append(["vision_average", ColumnContent, ColumnContent("Vision Average", "number", True)])
auto_eval_column_dict_multimodal.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict_multimodal.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
AutoEvalColumnMultimodal = make_dataclass("AutoEvalColumnMultimodal", auto_eval_column_dict_multimodal, frozen=True)
##############################################################################################################
# Version 3
auto_eval_column_dict_mib_subgraph = []
# Method name column (always present)
auto_eval_column_dict_mib_subgraph.append(
["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)]
)
# Add columns for each task-model combination
for task in TasksMib_Subgraph:
for model in task.value.models:
field_name = f"{task.value.benchmark}_{model}"
display_name = f"{task.value.benchmark}({model})"
print(f"Creating column - Field name: {field_name}, Display name: {display_name}")
column_content = ColumnContent(display_name, "number", True)
print(f"Column content name property: {column_content.name}")
auto_eval_column_dict_mib_subgraph.append([
field_name,
ColumnContent,
column_content
])
# Add the Average column
auto_eval_column_dict_mib_subgraph.append(
["average", ColumnContent, ColumnContent("Average", "number", True)]
)
print("\nFinal column configurations:")
for field in auto_eval_column_dict_mib_subgraph:
print(f"Field name: {field[0]}, Display name: {field[2].name}")
# Create the dataclass for MIB columns
AutoEvalColumn_mib_subgraph = make_dataclass("AutoEvalColumn_mib_subgraph", auto_eval_column_dict_mib_subgraph, frozen=True)
# Column selection for display
COLS_MIB_SUBGRAPH = [c.name for c in fields(AutoEvalColumn_mib_subgraph) if not c.hidden]
BENCHMARK_COLS_MIB_SUBGRAPH = []
for task in TasksMib_Subgraph:
for model in task.value.models:
col_name = f"{task.value.col_name}_{model.replace('-', '_')}"
BENCHMARK_COLS_MIB_SUBGRAPH.append(col_name)
# Implement the same for causal graph, auto_eval_column_dict_mib_causalgraph, AutoEvalColumn_mib_causalgraph
AutoEvalColumn_mib_causalgraph = []
COLS_MIB_CAUSALGRAPH = []
BENCHMARK_COLS_MIB_CAUSALGRAPH = []
auto_eval_column_dict_mib_causalgraph = []
# Only include Method column as required
auto_eval_column_dict_mib_causalgraph.append(["method", ColumnContent, ColumnContent("Method", "markdown", True, never_hidden=True)])
# For each model-task-intervention-counterfactual combination
for task in TasksMib_Causalgraph:
for model in task.value.models: # model will be lowercase
col_name = f"{task.value.benchmark}_{model}"
auto_eval_column_dict_mib_causalgraph.append([
col_name,
ColumnContent,
ColumnContent(col_name, "number", True)
])
# Add the Average column
auto_eval_column_dict_mib_causalgraph.append(
["average_score", ColumnContent, ColumnContent("Average", "number", True)]
)
# Create the dataclass
AutoEvalColumn_mib_causalgraph = make_dataclass(
"AutoEvalColumn_mib_causalgraph",
auto_eval_column_dict_mib_causalgraph,
frozen=True
)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
track_name = ColumnContent("track", "str", True)
method_name = ColumnContent("method_name", "str", True)
repo_id = ColumnContent("hf_repo", "markdown", True)
revision = ColumnContent("revision", "str", True)
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
COLS_MULTIMODAL = [c.name for c in fields(AutoEvalColumnMultimodal) if not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks] |