leaderboard / src /populate.py
jasonshaoshun
debug
202dbe2
raw
history blame
10.7 kB
import json
import os
import pandas as pd
from typing import List, Dict, Tuple
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, AutoEvalColumnMultimodal, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results, get_raw_eval_results_mib_subgraph, get_raw_eval_results_mib_causalgraph
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
print(f"results_path is {results_path}, requests_path is {requests_path}")
raw_data = get_raw_eval_results(results_path, requests_path)
print(f"raw_data is {raw_data}")
all_data_json = [v.to_dict() for v in raw_data]
print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}")
all_data_json_filtered = []
for item in all_data_json:
item["Track"] = item["eval_name"].split("_")[-1]
item["ioi"] = 0
item["mcqa"] = 0
if "VQA" in benchmark_cols and "VQA" in item:
all_data_json_filtered.append(item)
if "VQA" not in benchmark_cols and "VQA" not in item:
all_data_json_filtered.append(item)
all_data_json = all_data_json_filtered
df = pd.DataFrame.from_records(all_data_json)
df = df.sort_values(by=[AutoEvalColumn.text_average.name], ascending=False)
# df = df.sort_values(by=[Tasks.task0.value.col_name], ascending=False)
# df = df.sort_values(by=[AutoEvalColumn.track.name], ascending=False)
print(f"df is {df}")
# df = df[cols].round(decimals=1)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return df
def get_leaderboard_df_mib_subgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the MIB experiment results"""
print(f"results_path is {results_path}, requests_path is {requests_path}")
raw_data = get_raw_eval_results_mib_subgraph(results_path, requests_path)
print(f"raw_data is {raw_data}")
# Convert each result to dict format
all_data_json = [v.to_dict() for v in raw_data]
print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}")
# Convert to dataframe
df = pd.DataFrame.from_records(all_data_json)
# Sort by Average score descending
if 'Average' in df.columns:
# Convert '-' to NaN for sorting purposes
df['Average'] = pd.to_numeric(df['Average'], errors='coerce')
df = df.sort_values(by=['Average'], ascending=False, na_position='last')
# Convert NaN back to '-'
df['Average'] = df['Average'].fillna('-')
return df
# def aggregate_methods(df: pd.DataFrame) -> pd.DataFrame:
# """Aggregates rows with the same base method name by taking the max value for each column"""
# df_copy = df.copy()
# # Extract base method names (remove _2, _3, etc. suffixes)
# base_methods = [name.split('_')[0] if '_' in name and name.split('_')[-1].isdigit()
# else name for name in df_copy.index]
# df_copy.index = base_methods
# # Convert scores to numeric values
# numeric_df = df_copy.select_dtypes(include=['float64', 'int64'])
# # Group by base method name and take the max
# aggregated_df = numeric_df.groupby(level=0).max().round(3)
# return aggregated_df
def aggregate_methods(df: pd.DataFrame) -> pd.DataFrame:
"""Aggregates rows with the same base method name by taking the max value for each column"""
df_copy = df.copy()
# Set Method as index if it isn't already
if 'Method' in df_copy.columns:
df_copy.set_index('Method', inplace=True)
# Extract base method names (remove _2, _3, etc. suffixes)
base_methods = [name.split('_')[0] if '_' in str(name) and str(name).split('_')[-1].isdigit()
else name for name in df_copy.index]
df_copy.index = base_methods
# Convert scores to numeric values
numeric_df = df_copy.select_dtypes(include=['float64', 'int64'])
# Group by base method name and take the max
aggregated_df = numeric_df.groupby(level=0).max().round(3)
# Reset index to get Method as a column
aggregated_df.reset_index(inplace=True)
aggregated_df.rename(columns={'index': 'Method'}, inplace=True)
return aggregated_df
# def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
# """Creates a DataFrame where columns are model_task and cells are averaged over interventions"""
# df_copy = df.copy()
# # Remove the Method column and eval_name if present
# columns_to_drop = ['Method', 'eval_name']
# df_copy = df_copy.drop(columns=[col for col in columns_to_drop if col in df_copy.columns])
# # Group columns by model_task
# model_task_groups = {}
# for col in df_copy.columns:
# model_task = '_'.join(col.split('_')[:2]) # Get model_task part
# if model_task not in model_task_groups:
# model_task_groups[model_task] = []
# model_task_groups[model_task].append(col)
# # Create new DataFrame with averaged intervention scores
# averaged_df = pd.DataFrame({
# model_task: df_copy[cols].mean(axis=1).round(3)
# for model_task, cols in model_task_groups.items()
# })
# return averaged_df
def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
"""Creates a DataFrame where columns are model_task and cells are averaged over interventions"""
df_copy = df.copy()
# Store Method column if it exists
method_col = None
if 'Method' in df_copy.columns:
method_col = df_copy['Method']
df_copy = df_copy.drop('Method', axis=1)
# Remove eval_name if present
if 'eval_name' in df_copy.columns:
df_copy = df_copy.drop('eval_name', axis=1)
# Group columns by model_task
model_task_groups = {}
for col in df_copy.columns:
model_task = '_'.join(col.split('_')[:2]) # Get model_task part
if model_task not in model_task_groups:
model_task_groups[model_task] = []
model_task_groups[model_task].append(col)
# Create new DataFrame with averaged intervention scores
averaged_df = pd.DataFrame({
model_task: df_copy[cols].mean(axis=1).round(3)
for model_task, cols in model_task_groups.items()
})
# Add Method column back
if method_col is not None:
averaged_df.insert(0, 'Method', method_col)
return averaged_df
# def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
# """Creates a dataframe from all the MIB causal graph experiment results"""
# print(f"results_path is {results_path}, requests_path is {requests_path}")
# raw_data = get_raw_eval_results_mib_causalgraph(results_path, requests_path)
# print(f"raw_data is {raw_data}")
# # Convert each result to dict format for detailed df
# all_data_json = [v.to_dict() for v in raw_data]
# detailed_df = pd.DataFrame.from_records(all_data_json)
# print(f"detailed_df is: {detailed_df}")
# # Create and print other views for debugging/reference
# aggregated_df = aggregate_methods(detailed_df)
# print(f"aggregated_df is: {aggregated_df}")
# intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
# print(f"intervention_averaged_df is: {intervention_averaged_df}")
# # Only return detailed_df for display
# return detailed_df
def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""Creates three dataframes from all the MIB causal graph experiment results"""
print(f"results_path is {results_path}, requests_path is {requests_path}")
raw_data = get_raw_eval_results_mib_causalgraph(results_path, requests_path)
print(f"raw_data is {raw_data}")
# Convert each result to dict format for detailed df
all_data_json = [v.to_dict() for v in raw_data]
detailed_df = pd.DataFrame.from_records(all_data_json)
# Create aggregated df
aggregated_df = aggregate_methods(detailed_df)
# Create intervention-averaged df
intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
return detailed_df, aggregated_df, intervention_averaged_df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requests"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
if "still_on_hub" in data and data["still_on_hub"]:
data[EvalQueueColumn.model.name] = make_clickable_model(data["hf_repo"], data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
else:
data[EvalQueueColumn.model.name] = data["model"]
data[EvalQueueColumn.revision.name] = "N/A"
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]