leaderboard / app.py
atticusg's picture
Update app.py
bcb3085 verified
raw
history blame
11 kB
import json
import gzip
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from io import StringIO
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
BENCHMARK_COLS_MULTIMODAL,
BENCHMARK_COLS_MIB,
COLS,
COLS_MIB,
COLS_MULTIMODAL,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
AutoEvalColumn_mib,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
# print("EVAL_RESULTS_PATH")
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
# )
# except Exception:
# restart_space()
try:
print(RESULTS_REPO_MIB_SUBGRAPH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(RESULTS_REPO_MIB_CAUSALGRAPH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB, BENCHMARK_COLS_MIB)
LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB, BENCHMARK_COLS_MIB)
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard_mib(dataframe, track):
print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# filter for correct track
# dataframe = dataframe.loc[dataframe["Track"] == track]
print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn_mib)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn_mib) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn_mib) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=["Method"], # Changed from AutoEvalColumn_mib.model.name to "Method"
hide_columns=[c.name for c in fields(AutoEvalColumn_mib) if c.hidden],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def calculate_best_layer_scores(task_data: Dict[str, Any]) -> Dict[str, float]:
"""
Calculate the best scores across layers for output token and location
Args:
task_data: Dictionary containing task scores for different layers
Returns:
Dictionary with best scores and corresponding layer
"""
output_token_scores = [layer_data['output_token'] for layer_data in task_data.values()]
output_location_scores = [layer_data['output_location'] for layer_data in task_data.values()]
best_output_token = max(output_token_scores)
best_output_location = max(output_location_scores)
# Find the layer with the best combined performance
layer_scores = [(layer, layer_data['output_token'] + layer_data['output_location'])
for layer, layer_data in task_data.items()]
best_layer = max(layer_scores, key=lambda x: x[1])[0]
return {
'output_token': best_output_token,
'output_location': best_output_location,
'best_layer': int(best_layer)
}
def process_single_method(json_data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Process results for a single method into summary rows
Args:
json_data: Dictionary containing results for one method
Returns:
List of summary rows for the method
"""
summary_rows = []
method_name = json_data['method_name']
for model_result in json_data['results']:
model_id = model_result['model_id']
task_data = model_result['task_scores']['MCQA']
best_scores = calculate_best_layer_scores(task_data)
summary_row = {
'Method': method_name,
'Model': model_id,
'Best Output Token Score': best_scores['output_token'],
'Best Output Location Score': best_scores['output_location'],
'Best Layer': best_scores['best_layer']
}
summary_rows.append(summary_row)
return summary_rows
def init_leaderboard_mib_causal(json_data_list: List[Dict[str, Any]], track: str) -> 'Leaderboard':
"""
Creates a leaderboard summary for causal intervention results from multiple methods
Args:
json_data_list: List of dictionaries containing results for different methods
track: Track identifier (currently unused but maintained for compatibility)
Returns:
Leaderboard object containing processed and formatted results
"""
# Process all methods
all_summary_data = []
for method_data in json_data_list:
method_summary = process_single_method(method_data)
all_summary_data.extend(method_summary)
# Convert to DataFrame
results_df = pd.DataFrame(all_summary_data)
# Sort by best score (using output token score as primary metric)
results_df = results_df.sort_values('Best Output Token Score', ascending=False)
# Round numeric columns to 3 decimal places
numeric_cols = ['Best Output Token Score', 'Best Output Location Score']
results_df[numeric_cols] = results_df[numeric_cols].round(3)
return Leaderboard(
value=results_df,
datatype=['text', 'text', 'number', 'number', 'number'],
select_columns=SelectColumns(
default_selection=['Method', 'Model', 'Best Output Token Score', 'Best Output Location Score', 'Best Layer'],
cant_deselect=['Method', 'Model'],
label="Select Metrics to Display:",
),
search_columns=['Method', 'Model'],
interactive=False,
)
def init_leaderboard(dataframe, track):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# filter for correct track
dataframe = dataframe.loc[dataframe["Track"] == track]
# print(f"\n\n\n dataframe is {dataframe}\n\n\n")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def process_json(temp_file):
if temp_file is None:
return {}
# Handle file upload
try:
file_path = temp_file.name
if file_path.endswith('.gz'):
with gzip.open(file_path, 'rt') as f:
data = json.load(f)
else:
with open(file_path, 'r') as f:
data = json.load(f)
except Exception as e:
raise gr.Error(f"Error processing file: {str(e)}")
gr.Markdown("Upload successful!")
return data
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0):
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict")
# with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1):
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small")
# with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2):
# leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal")
# with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=4):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("πŸ‘Ά Submit", elem_id="llm-benchmark-tab-table", id=5):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
leaderboard = init_leaderboard_mib(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
# leaderboard = init_leaderboard_mib(LEADERBOARD_DF, "mib")
with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1):
leaderboard = init_leaderboard_mib_causal(LEADERBOARD_DF_MIB_CAUSALGRAPH, "Causal Graph")
# with gr.Row():
# with gr.Accordion("πŸ“™ Citation", open=False):
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# lines=20,
# elem_id="citation-button",
# show_copy_button=True,
# )
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch(share=True, ssr_mode=False)