leaderboard / app.pyi
Aaron Mueller
updated filtering, add F= tab
1d8e193
import json
import gzip
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from io import StringIO
from dataclasses import dataclass, field
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
BENCHMARK_COLS_MULTIMODAL,
BENCHMARK_COLS_MIB_SUBGRAPH,
BENCHMARK_COLS_MIB_CAUSALGRAPH,
COLS,
COLS_MIB_SUBGRAPH,
COLS_MIB_CAUSALGRAPH,
COLS_MULTIMODAL,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
AutoEvalColumn_mib_subgraph,
AutoEvalColumn_mib_causalgraph,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph
from src.submission.submit import add_new_eval
from src.about import TasksMib_Subgraph
# class SmartSelectColumns(SelectColumns):
# """
# Enhanced SelectColumns component with basic filtering functionality.
# """
# def __init__(
# self,
# benchmark_keywords: Optional[List[str]] = None,
# model_keywords: Optional[List[str]] = None,
# initial_selected: Optional[List[str]] = None,
# **kwargs
# ):
# """
# Initialize SmartSelectColumns with minimal configuration.
# Args:
# benchmark_keywords: List of benchmark names to filter by
# model_keywords: List of model names to filter by
# initial_selected: List of columns to show initially
# """
# super().__init__(**kwargs)
# self.benchmark_keywords = benchmark_keywords or []
# self.model_keywords = model_keywords or []
# self.initial_selected = initial_selected or []
# def get_filtered_groups(self, df: pd.DataFrame) -> Dict[str, List[str]]:
# """
# Create column groups based on simple substring matching.
# """
# filtered_groups = {}
# # Create benchmark groups
# for benchmark in self.benchmark_keywords:
# matching_cols = [
# col for col in df.columns
# if benchmark in col.lower()
# ]
# if matching_cols:
# group_name = f"Benchmark group for {benchmark}"
# filtered_groups[group_name] = matching_cols
# # Create model groups
# for model in self.model_keywords:
# matching_cols = [
# col for col in df.columns
# if model in col.lower()
# ]
# if matching_cols:
# group_name = f"Model group for {model}"
# filtered_groups[group_name] = matching_cols
# return filtered_groups
# def update(
# self,
# value: Union[pd.DataFrame, Dict[str, List[str]], Any]
# ) -> Dict:
# """Update component with new values."""
# if isinstance(value, pd.DataFrame):
# choices = list(value.columns)
# selected = self.initial_selected if self.initial_selected else choices
# filtered_cols = self.get_filtered_groups(value)
# return {
# "choices": choices,
# "value": selected,
# "filtered_cols": filtered_cols
# }
# if hasattr(value, '__dataclass_fields__'):
# field_names = [field.name for field in fields(value)]
# return {
# "choices": field_names,
# "value": self.initial_selected if self.initial_selected else field_names
# }
# return super().update(value)
from gradio.events import Dependency
class ModifiedLeaderboard(Leaderboard):
"""Extends Leaderboard to support substring-based column filtering"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Process substring groups if they exist
if (isinstance(self.select_columns_config, SelectColumns) and
self.select_columns_config.substring_groups):
self.process_substring_groups()
def process_substring_groups(self):
"""Processes substring groups to add them to the selectable columns"""
groups = self.select_columns_config.substring_groups
if not groups:
return
# Create a mapping of group name to matching columns
group_to_columns = {}
for group_name, patterns in groups.groups.items():
matching_cols = set()
for pattern in patterns:
regex = re.compile(pattern.replace('*', '.*'))
matching_cols.update(
col for col in self.headers
if regex.search(col)
)
if matching_cols:
group_to_columns[group_name] = list(matching_cols)
# Add groups to the headers and update column selection logic
self.group_to_columns = group_to_columns
self.original_headers = self.headers.copy()
# Add group names to the start of headers
self.headers = list(group_to_columns.keys()) + self.original_headers
# Update default selection to include groups
if self.select_columns_config.default_selection:
self.select_columns_config.default_selection = (
list(group_to_columns.keys()) +
self.select_columns_config.default_selection
)
def preprocess(self, payload):
"""Override preprocess to handle group selection"""
df = super().preprocess(payload)
# If we don't have substring groups, return normally
if not hasattr(self, 'group_to_columns'):
return df
# Process group selections
selected_columns = set()
for column in payload.headers:
if column in self.group_to_columns:
# If a group is selected, add all its columns
selected_columns.update(self.group_to_columns[column])
elif column in self.original_headers:
# Add individually selected columns
selected_columns.add(column)
# Return DataFrame with only selected columns
return df[list(selected_columns)]
from typing import Callable, Literal, Sequence, Any, TYPE_CHECKING
from gradio.blocks import Block
if TYPE_CHECKING:
from gradio.components import Timer
from gradio_leaderboard import SelectColumns, Leaderboard
import pandas as pd
from typing import List, Dict, Optional
from dataclasses import fields
class SmartSelectColumns(SelectColumns):
"""
Enhanced SelectColumns component matching exact original parameters.
"""
def __init__(
self,
benchmark_keywords: Optional[List[str]] = None,
model_keywords: Optional[List[str]] = None,
initial_selected: Optional[List[str]] = None,
label: Optional[str] = None,
show_label: bool = True,
info: Optional[str] = None,
allow: bool = True
):
# Match exact parameters from working SelectColumns
super().__init__(
default_selection=initial_selected or [],
cant_deselect=[],
allow=allow,
label=label,
show_label=show_label,
info=info
)
self.benchmark_keywords = benchmark_keywords or []
self.model_keywords = model_keywords or []
# Store groups for later use
self._groups = {}
def get_filtered_groups(self, columns: List[str]) -> Dict[str, List[str]]:
"""Get column groups based on keywords."""
filtered_groups = {}
# Add benchmark groups
for benchmark in self.benchmark_keywords:
matching_cols = [
col for col in columns
if benchmark in col.lower()
]
if matching_cols:
filtered_groups[f"Benchmark group for {benchmark}"] = matching_cols
# Add model groups
for model in self.model_keywords:
matching_cols = [
col for col in columns
if model in col.lower()
]
if matching_cols:
filtered_groups[f"Model group for {model}"] = matching_cols
self._groups = filtered_groups
return filtered_groups
import re
@dataclass
class SubstringSelectColumns(SelectColumns):
"""
Extends SelectColumns to support filtering columns by predefined substrings.
When a substring is selected, all columns containing that substring will be selected.
"""
substring_groups: Dict[str, List[str]] = field(default_factory=dict)
selected_substrings: List[str] = field(default_factory=list)
def __post_init__(self):
# Ensure default_selection is a list
if self.default_selection is None:
self.default_selection = []
# Build reverse mapping of column to substrings
self.column_to_substrings = {}
for substring, patterns in self.substring_groups.items():
for pattern in patterns:
# Convert glob-style patterns to regex
regex = re.compile(pattern.replace('*', '.*'))
# Find matching columns in default_selection
for col in self.default_selection:
if regex.search(col):
if col not in self.column_to_substrings:
self.column_to_substrings[col] = []
self.column_to_substrings[col].append(substring)
# Apply initial substring selections
if self.selected_substrings:
self.update_selection_from_substrings()
def update_selection_from_substrings(self) -> List[str]:
"""
Updates the column selection based on selected substrings.
Returns the new list of selected columns.
"""
selected_columns = self.cant_deselect.copy()
# If no substrings selected, show all columns
if not self.selected_substrings:
selected_columns.extend([
col for col in self.default_selection
if col not in self.cant_deselect
])
return selected_columns
# Add columns that match any selected substring
for col, substrings in self.column_to_substrings.items():
if any(s in self.selected_substrings for s in substrings):
if col not in selected_columns:
selected_columns.append(col)
return selected_columns
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
# print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
# print(RESULTS_REPO_MIB_SUBGRAPH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
# print(RESULTS_REPO_MIB_CAUSALGRAPH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH)
# LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib_causalgraph(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_CAUSALGRAPH, BENCHMARK_COLS_MIB_CAUSALGRAPH)
# In app.py, modify the LEADERBOARD initialization
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph(
EVAL_RESULTS_MIB_CAUSALGRAPH_PATH,
EVAL_REQUESTS_PATH,
COLS_MIB_CAUSALGRAPH,
BENCHMARK_COLS_MIB_CAUSALGRAPH
)
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# def init_leaderboard_mib_subgraph(dataframe, track):
# # print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# # filter for correct track
# # dataframe = dataframe.loc[dataframe["Track"] == track]
# # print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default],
# cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden],
# label="Select Columns to Display:",
# ),
# search_columns=["Method"], # Changed from AutoEvalColumn_mib_subgraph.model.name to "Method"
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
# bool_checkboxgroup_label="Hide models",
# interactive=False,
# )
# def init_leaderboard_mib_subgraph(dataframe, track):
# """Initialize the subgraph leaderboard with grouped column selection by benchmark."""
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
# # Create groups of columns by benchmark
# benchmark_groups = []
# # For each benchmark in our TasksMib_Subgraph enum...
# for task in TasksMib_Subgraph:
# benchmark = task.value.benchmark
# # Get all valid columns for this benchmark's models
# benchmark_cols = [
# f"{benchmark}_{model}"
# for model in task.value.models
# if f"{benchmark}_{model}" in dataframe.columns
# ]
# if benchmark_cols: # Only add if we have valid columns
# benchmark_groups.append(benchmark_cols)
# print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
# # Create model groups as well
# model_groups = []
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
# # For each unique model...
# for model in all_models:
# # Get all valid columns for this model across benchmarks
# model_cols = [
# f"{task.value.benchmark}_{model}"
# for task in TasksMib_Subgraph
# if model in task.value.models
# and f"{task.value.benchmark}_{model}" in dataframe.columns
# ]
# if model_cols: # Only add if we have valid columns
# model_groups.append(model_cols)
# print(f"\nModel group for {model}:", model_cols)
# # Combine all groups
# all_groups = benchmark_groups + model_groups
# # Flatten groups for default selection (show everything initially)
# all_columns = [col for group in all_groups for col in group]
# print("\nAll available columns:", all_columns)
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=all_columns, # Show all columns initially
# label="Select Results:"
# ),
# search_columns=["Method"],
# hide_columns=[],
# interactive=False,
# )
def init_leaderboard_mib_subgraph(dataframe, track):
"""Initialize the subgraph leaderboard with display names for better readability."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
# First, create our display name mapping
# This is like creating a translation dictionary between internal names and display names
model_name_mapping = {
"qwen2_5": "Qwen-2.5",
"gpt2": "GPT-2",
"gemma2": "Gemma-2",
"llama3": "Llama-3.1"
}
benchmark_mapping = {
"ioi": "IOI",
"mcqa": "MCQA",
"arithmetic_addition": "Arithmetic (+)",
"arithmetic_subtraction": "Arithmetic (-)",
"arc_easy": "ARC (Easy)",
"arc_challenge": "ARC (Challenge)"
}
display_mapping = {}
for task in TasksMib_Subgraph:
for model in task.value.models:
field_name = f"{task.value.benchmark}_{model}"
display_name = f"{benchmark_mapping[task.value.benchmark]} - {model_name_mapping[model]}"
display_mapping[field_name] = display_name
# Now when creating benchmark groups, we'll use display names
benchmark_groups = []
for task in TasksMib_Subgraph:
benchmark = task.value.benchmark
benchmark_cols = [
display_mapping[f"{benchmark}_{model}"] # Use display name from our mapping
for model in task.value.models
if f"{benchmark}_{model}" in dataframe.columns
]
if benchmark_cols:
benchmark_groups.append(benchmark_cols)
print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
# Similarly for model groups
model_groups = []
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
for model in all_models:
model_cols = [
display_mapping[f"{task.value.benchmark}_{model}"] # Use display name
for task in TasksMib_Subgraph
if model in task.value.models
and f"{task.value.benchmark}_{model}" in dataframe.columns
]
if model_cols:
model_groups.append(model_cols)
print(f"\nModel group for {model}:", model_cols)
# Combine all groups using display names
all_groups = benchmark_groups + model_groups
all_columns = [col for group in all_groups for col in group]
# Important: We need to rename our DataFrame columns to match display names
renamed_df = dataframe.rename(columns=display_mapping)
# all_columns = [c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default]
# all_columns = [c.name for c in fields(AutoEvalColumn_mib_subgraph)]
all_columns = renamed_df.columns.tolist()
print(benchmark_groups)
print(model_groups)
filter_groups = {"ioi": "*IOI*",
"llama": "*Llama*"}
# Original code
return ModifiedLeaderboard(
value=renamed_df, # Use DataFrame with display names
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
select_columns=SubstringSelectColumns(
substring_groups=filter_groups,
default_selection=all_columns, # Now contains display names
label="Filter Results:",
allow=True
),
search_columns=["Method"],
hide_columns=[],
interactive=False,
)
# # Complete column groups for both benchmarks and models
# # Define keywords for filtering
# benchmark_keywords = ["ioi", "mcqa", "arithmetic_addition", "arithmetic_subtraction", "arc_easy", "arc_challenge"]
# model_keywords = ["qwen2_5", "gpt2", "gemma2", "llama3"]
# # Optional: Define display names
# mappings = {
# "ioi_llama3": "IOI (LLaMA-3)",
# "ioi_qwen2_5": "IOI (Qwen-2.5)",
# "ioi_gpt2": "IOI (GPT-2)",
# "ioi_gemma2": "IOI (Gemma-2)",
# "mcqa_llama3": "MCQA (LLaMA-3)",
# "mcqa_qwen2_5": "MCQA (Qwen-2.5)",
# "mcqa_gemma2": "MCQA (Gemma-2)",
# "arithmetic_addition_llama3": "Arithmetic Addition (LLaMA-3)",
# "arithmetic_subtraction_llama3": "Arithmetic Subtraction (LLaMA-3)",
# "arc_easy_llama3": "ARC Easy (LLaMA-3)",
# "arc_easy_gemma2": "ARC Easy (Gemma-2)",
# "arc_challenge_llama3": "ARC Challenge (LLaMA-3)",
# "eval_name": "Evaluation Name",
# "Method": "Method",
# "Average": "Average Score"
# }
# # mappings = {}
# # Create SmartSelectColumns instance
# smart_columns = SmartSelectColumns(
# benchmark_keywords=benchmark_keywords,
# model_keywords=model_keywords,
# column_mapping=mappings,
# initial_selected=["Method", "Average"]
# )
# print("\nDebugging DataFrame columns:", renamed_df.columns.tolist())
# # Create Leaderboard
# leaderboard = Leaderboard(
# value=renamed_df,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=smart_columns,
# search_columns=["Method"],
# hide_columns=[],
# interactive=False
# )
# print(f"Successfully created leaderboard.")
# return leaderboard
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
# # Define simple keywords for filtering
# benchmark_keywords = ["ioi", "mcqa", "arithmetic", "arc"]
# model_keywords = ["qwen2_5", "gpt2", "gemma2", "llama3"]
# # Create SmartSelectColumns instance with exact same parameters as working version
# smart_columns = SmartSelectColumns(
# benchmark_keywords=benchmark_keywords,
# model_keywords=model_keywords,
# initial_selected=["Method", "Average"],
# allow=True,
# label=None,
# show_label=True,
# info=None
# )
# try:
# print("\nCreating leaderboard...")
# # Get groups before creating leaderboard
# smart_columns.get_filtered_groups(dataframe.columns)
# leaderboard = Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=smart_columns,
# search_columns=["Method"],
# hide_columns=[],
# interactive=False
# )
# print("Leaderboard created successfully")
# return leaderboard
# except Exception as e:
# print("Error creating leaderboard:", str(e))
# raise
# def init_leaderboard_mib_subgraph(dataframe, track):
# """Initialize the subgraph leaderboard with group-based column selection."""
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
# # Create selection mapping for benchmark groups
# selection_mapping = {}
# # Create benchmark groups with descriptive names
# for task in TasksMib_Subgraph:
# benchmark = task.value.benchmark
# # Get all columns for this benchmark's models
# benchmark_cols = [
# f"{benchmark}_{model}"
# for model in task.value.models
# if f"{benchmark}_{model}" in dataframe.columns
# ]
# if benchmark_cols:
# # Use a descriptive group name as the key
# group_name = f"Benchmark: {benchmark.upper()}"
# selection_mapping[group_name] = benchmark_cols
# print(f"\n{group_name} maps to:", benchmark_cols)
# # Create model groups with descriptive names
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
# for model in all_models:
# # Get all columns for this model across benchmarks
# model_cols = [
# f"{task.value.benchmark}_{model}"
# for task in TasksMib_Subgraph
# if model in task.value.models
# and f"{task.value.benchmark}_{model}" in dataframe.columns
# ]
# if model_cols:
# # Use a descriptive group name as the key
# group_name = f"Model: {model}"
# selection_mapping[group_name] = model_cols
# print(f"\n{group_name} maps to:", model_cols)
# # The selection options are the group names
# selection_options = list(selection_mapping.keys())
# print("\nSelection options:", selection_options)
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=selection_options, # Show all groups by default
# label="Select Benchmark or Model Groups:"
# ),
# search_columns=["Method"],
# hide_columns=[],
# interactive=False,
# )
# def init_leaderboard_mib_causalgraph(dataframe, track):
# # print("Debugging column issues:")
# # print("\nActual DataFrame columns:")
# # print(dataframe.columns.tolist())
# # print("\nExpected columns for Leaderboard:")
# expected_cols = [c.name for c in fields(AutoEvalColumn_mib_causalgraph)]
# # print(expected_cols)
# # print("\nMissing columns:")
# missing_cols = [col for col in expected_cols if col not in dataframe.columns]
# # print(missing_cols)
# # print("\nSample of DataFrame content:")
# # print(dataframe.head().to_string())
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
# select_columns=SelectColumns(
# default_selection=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.displayed_by_default],
# cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.never_hidden],
# label="Select Columns to Display:",
# ),
# search_columns=["Method"],
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.hidden],
# bool_checkboxgroup_label="Hide models",
# interactive=False,
# )
def init_leaderboard_mib_causalgraph(dataframe, track):
# print("Debugging column issues:")
# print("\nActual DataFrame columns:")
# print(dataframe.columns.tolist())
# Create only necessary columns
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
select_columns=SelectColumns(
default_selection=["Method"], # Start with just Method column
cant_deselect=["Method"], # Method column should always be visible
label="Select Columns to Display:",
),
search_columns=["Method"],
hide_columns=[],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def init_leaderboard(dataframe, track):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# filter for correct track
dataframe = dataframe.loc[dataframe["Track"] == track]
# print(f"\n\n\n dataframe is {dataframe}\n\n\n")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def process_json(temp_file):
if temp_file is None:
return {}
# Handle file upload
try:
file_path = temp_file.name
if file_path.endswith('.gz'):
with gzip.open(file_path, 'rt') as f:
data = json.load(f)
else:
with open(file_path, 'r') as f:
data = json.load(f)
except Exception as e:
raise gr.Error(f"Error processing file: {str(e)}")
gr.Markdown("Upload successful!")
return data
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0):
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict")
# with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1):
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small")
# with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2):
# leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal")
# with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=4):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("πŸ‘Ά Submit", elem_id="llm-benchmark-tab-table", id=5):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
# leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
# Add description for filters
gr.Markdown("""
### Filtering Options
Use the dropdown menus below to filter results by specific tasks or models.
You can combine filters to see specific task-model combinations.
""")
leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
print(f"Leaderboard is {leaderboard}")
# Then modify the Causal Graph tab section
with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1):
with gr.Tabs() as causalgraph_tabs:
with gr.TabItem("Detailed View", id=0):
leaderboard_detailed = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED,
"Causal Graph"
)
with gr.TabItem("Aggregated View", id=1):
leaderboard_aggregated = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED,
"Causal Graph"
)
with gr.TabItem("Intervention Averaged", id=2):
leaderboard_averaged = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED,
"Causal Graph"
)
# with gr.Row():
# with gr.Accordion("πŸ“™ Citation", open=False):
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# lines=20,
# elem_id="citation-button",
# show_copy_button=True,
# )
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch(share=True, ssr_mode=False)