Spaces:
Running
Running
import json | |
import gzip | |
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from io import StringIO | |
from dataclasses import dataclass, field | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
BENCHMARK_COLS_MULTIMODAL, | |
BENCHMARK_COLS_MIB_SUBGRAPH, | |
BENCHMARK_COLS_MIB_CAUSALGRAPH, | |
COLS, | |
COLS_MIB_SUBGRAPH, | |
COLS_MIB_CAUSALGRAPH, | |
COLS_MULTIMODAL, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
AutoEvalColumn_mib_subgraph, | |
AutoEvalColumn_mib_causalgraph, | |
fields, | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph | |
from src.submission.submit import add_new_eval | |
from src.about import TasksMib_Subgraph | |
from gradio.events import Dependency | |
class ModifiedLeaderboard(Leaderboard): | |
"""Extends Leaderboard to support substring-based column filtering""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# Process substring groups if they exist | |
if (isinstance(self.select_columns_config, SelectColumns) and | |
self.select_columns_config.substring_groups): | |
self.process_substring_groups() | |
def process_substring_groups(self): | |
"""Processes substring groups to add them to the selectable columns""" | |
groups = self.select_columns_config.substring_groups | |
if not groups: | |
return | |
# Create a mapping of group name to matching columns | |
group_to_columns = {} | |
for group_name, patterns in groups.groups.items(): | |
matching_cols = set() | |
for pattern in patterns: | |
regex = re.compile(pattern.replace('*', '.*')) | |
matching_cols.update( | |
col for col in self.headers | |
if regex.search(col) | |
) | |
if matching_cols: | |
group_to_columns[group_name] = list(matching_cols) | |
# Add groups to the headers and update column selection logic | |
self.group_to_columns = group_to_columns | |
self.original_headers = self.headers.copy() | |
# Add group names to the start of headers | |
self.headers = list(group_to_columns.keys()) + self.original_headers | |
# Update default selection to include groups | |
if self.select_columns_config.default_selection: | |
self.select_columns_config.default_selection = ( | |
list(group_to_columns.keys()) + | |
self.select_columns_config.default_selection | |
) | |
def preprocess(self, payload): | |
"""Override preprocess to handle group selection""" | |
df = super().preprocess(payload) | |
# If we don't have substring groups, return normally | |
if not hasattr(self, 'group_to_columns'): | |
return df | |
# Process group selections | |
selected_columns = set() | |
for column in payload.headers: | |
if column in self.group_to_columns: | |
# If a group is selected, add all its columns | |
selected_columns.update(self.group_to_columns[column]) | |
elif column in self.original_headers: | |
# Add individually selected columns | |
selected_columns.add(column) | |
# Return DataFrame with only selected columns | |
return df[list(selected_columns)] | |
from typing import Callable, Literal, Sequence, Any, TYPE_CHECKING | |
from gradio.blocks import Block | |
if TYPE_CHECKING: | |
from gradio.components import Timer | |
from gradio_leaderboard import SelectColumns, Leaderboard | |
import pandas as pd | |
from typing import List, Dict, Optional | |
from dataclasses import fields | |
class SmartSelectColumns(SelectColumns): | |
""" | |
Enhanced SelectColumns component matching exact original parameters. | |
""" | |
def __init__( | |
self, | |
benchmark_keywords: Optional[List[str]] = None, | |
model_keywords: Optional[List[str]] = None, | |
initial_selected: Optional[List[str]] = None, | |
label: Optional[str] = None, | |
show_label: bool = True, | |
info: Optional[str] = None, | |
allow: bool = True | |
): | |
# Match exact parameters from working SelectColumns | |
super().__init__( | |
default_selection=initial_selected or [], | |
cant_deselect=[], | |
allow=allow, | |
label=label, | |
show_label=show_label, | |
info=info | |
) | |
self.benchmark_keywords = benchmark_keywords or [] | |
self.model_keywords = model_keywords or [] | |
# Store groups for later use | |
self._groups = {} | |
def get_filtered_groups(self, columns: List[str]) -> Dict[str, List[str]]: | |
"""Get column groups based on keywords.""" | |
filtered_groups = {} | |
# Add benchmark groups | |
for benchmark in self.benchmark_keywords: | |
matching_cols = [ | |
col for col in columns | |
if benchmark in col.lower() | |
] | |
if matching_cols: | |
filtered_groups[f"Benchmark group for {benchmark}"] = matching_cols | |
# Add model groups | |
for model in self.model_keywords: | |
matching_cols = [ | |
col for col in columns | |
if model in col.lower() | |
] | |
if matching_cols: | |
filtered_groups[f"Model group for {model}"] = matching_cols | |
self._groups = filtered_groups | |
return filtered_groups | |
import re | |
@dataclass | |
class SubstringSelectColumns(SelectColumns): | |
""" | |
Extends SelectColumns to support filtering columns by predefined substrings. | |
When a substring is selected, all columns containing that substring will be selected. | |
""" | |
substring_groups: Dict[str, List[str]] = field(default_factory=dict) | |
selected_substrings: List[str] = field(default_factory=list) | |
def __post_init__(self): | |
# Ensure default_selection is a list | |
if self.default_selection is None: | |
self.default_selection = [] | |
# Build reverse mapping of column to substrings | |
self.column_to_substrings = {} | |
for substring, patterns in self.substring_groups.items(): | |
for pattern in patterns: | |
# Convert glob-style patterns to regex | |
regex = re.compile(pattern.replace('*', '.*')) | |
# Find matching columns in default_selection | |
for col in self.default_selection: | |
if regex.search(col): | |
if col not in self.column_to_substrings: | |
self.column_to_substrings[col] = [] | |
self.column_to_substrings[col].append(substring) | |
# Apply initial substring selections | |
if self.selected_substrings: | |
self.update_selection_from_substrings() | |
def update_selection_from_substrings(self) -> List[str]: | |
""" | |
Updates the column selection based on selected substrings. | |
Returns the new list of selected columns. | |
""" | |
selected_columns = self.cant_deselect.copy() | |
# If no substrings selected, show all columns | |
if not self.selected_substrings: | |
selected_columns.extend([ | |
col for col in self.default_selection | |
if col not in self.cant_deselect | |
]) | |
return selected_columns | |
# Add columns that match any selected substring | |
for col, substrings in self.column_to_substrings.items(): | |
if any(s in self.selected_substrings for s in substrings): | |
if col not in selected_columns: | |
selected_columns.append(col) | |
return selected_columns | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
### Space initialisation | |
try: | |
# print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
# print(RESULTS_REPO_MIB_SUBGRAPH) | |
snapshot_download( | |
repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
# print(RESULTS_REPO_MIB_CAUSALGRAPH) | |
snapshot_download( | |
repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH) | |
# LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib_causalgraph(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_CAUSALGRAPH, BENCHMARK_COLS_MIB_CAUSALGRAPH) | |
# In app.py, modify the LEADERBOARD initialization | |
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph( | |
EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, | |
EVAL_REQUESTS_PATH, | |
COLS_MIB_CAUSALGRAPH, | |
BENCHMARK_COLS_MIB_CAUSALGRAPH | |
) | |
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL) | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
# def init_leaderboard_mib_subgraph(dataframe, track): | |
# # print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n") | |
# if dataframe is None or dataframe.empty: | |
# raise ValueError("Leaderboard DataFrame is empty or None.") | |
# # filter for correct track | |
# # dataframe = dataframe.loc[dataframe["Track"] == track] | |
# # print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n") | |
# return Leaderboard( | |
def init_leaderboard_mib_subgraph(dataframe, track): | |
"""Initialize the subgraph leaderboard with display names for better readability.""" | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
print("\nDebugging DataFrame columns:", dataframe.columns.tolist()) | |
# First, create our display name mapping | |
# This is like creating a translation dictionary between internal names and display names | |
model_name_mapping = { | |
"qwen2_5": "Qwen-2.5", | |
"gpt2": "GPT-2", | |
"gemma2": "Gemma-2", | |
"llama3": "Llama-3.1" | |
} | |
benchmark_mapping = { | |
"ioi": "IOI", | |
"mcqa": "MCQA", | |
"arithmetic_addition": "Arithmetic (+)", | |
"arithmetic_subtraction": "Arithmetic (-)", | |
"arc_easy": "ARC (Easy)", | |
"arc_challenge": "ARC (Challenge)" | |
} | |
display_mapping = {} | |
for task in TasksMib_Subgraph: | |
for model in task.value.models: | |
field_name = f"{task.value.benchmark}_{model}" | |
display_name = f"{benchmark_mapping[task.value.benchmark]} - {model_name_mapping[model]}" | |
display_mapping[field_name] = display_name | |
# Now when creating benchmark groups, we'll use display names | |
benchmark_groups = [] | |
for task in TasksMib_Subgraph: | |
benchmark = task.value.benchmark | |
benchmark_cols = [ | |
display_mapping[f"{benchmark}_{model}"] # Use display name from our mapping | |
for model in task.value.models | |
if f"{benchmark}_{model}" in dataframe.columns | |
] | |
if benchmark_cols: | |
benchmark_groups.append(benchmark_cols) | |
print(f"\nBenchmark group for {benchmark}:", benchmark_cols) | |
# Similarly for model groups | |
model_groups = [] | |
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models)) | |
for model in all_models: | |
model_cols = [ | |
display_mapping[f"{task.value.benchmark}_{model}"] # Use display name | |
for task in TasksMib_Subgraph | |
if model in task.value.models | |
and f"{task.value.benchmark}_{model}" in dataframe.columns | |
] | |
if model_cols: | |
model_groups.append(model_cols) | |
print(f"\nModel group for {model}:", model_cols) | |
# Combine all groups using display names | |
all_groups = benchmark_groups + model_groups | |
all_columns = [col for group in all_groups for col in group] | |
# Important: We need to rename our DataFrame columns to match display names | |
renamed_df = dataframe.rename(columns=display_mapping) | |
# all_columns = [c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default] | |
# all_columns = [c.name for c in fields(AutoEvalColumn_mib_subgraph)] | |
all_columns = renamed_df.columns.tolist() | |
print(benchmark_groups) | |
print(model_groups) | |
filter_groups = {"ioi": "*IOI*", | |
"llama": "*Llama*"} | |
# Original code | |
return ModifiedLeaderboard( | |
value=renamed_df, # Use DataFrame with display names | |
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
select_columns=SubstringSelectColumns( | |
substring_groups=filter_groups, | |
default_selection=all_columns, # Now contains display names | |
label="Filter Results:", | |
allow=True | |
), | |
search_columns=["Method"], | |
hide_columns=[], | |
interactive=False, | |
) | |
# # Complete column groups for both benchmarks and models | |
# # Define keywords for filtering | |
# benchmark_keywords = ["ioi", "mcqa", "arithmetic_addition", "arithmetic_subtraction", "arc_easy", "arc_challenge"] | |
# model_keywords = ["qwen2_5", "gpt2", "gemma2", "llama3"] | |
# # Optional: Define display names | |
# mappings = { | |
# "ioi_llama3": "IOI (LLaMA-3)", | |
# "ioi_qwen2_5": "IOI (Qwen-2.5)", | |
# "ioi_gpt2": "IOI (GPT-2)", | |
# "ioi_gemma2": "IOI (Gemma-2)", | |
# "mcqa_llama3": "MCQA (LLaMA-3)", | |
# "mcqa_qwen2_5": "MCQA (Qwen-2.5)", | |
# "mcqa_gemma2": "MCQA (Gemma-2)", | |
# "arithmetic_addition_llama3": "Arithmetic Addition (LLaMA-3)", | |
# "arithmetic_subtraction_llama3": "Arithmetic Subtraction (LLaMA-3)", | |
# "arc_easy_llama3": "ARC Easy (LLaMA-3)", | |
# "arc_easy_gemma2": "ARC Easy (Gemma-2)", | |
# "arc_challenge_llama3": "ARC Challenge (LLaMA-3)", | |
# "eval_name": "Evaluation Name", | |
# "Method": "Method", | |
# "Average": "Average Score" | |
# } | |
# # mappings = {} | |
# # Create SmartSelectColumns instance | |
# smart_columns = SmartSelectColumns( | |
# benchmark_keywords=benchmark_keywords, | |
# model_keywords=model_keywords, | |
# column_mapping=mappings, | |
# initial_selected=["Method", "Average"] | |
# ) | |
# print("\nDebugging DataFrame columns:", renamed_df.columns.tolist()) | |
# # Create Leaderboard | |
# leaderboard = Leaderboard( | |
# value=renamed_df, | |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
# select_columns=smart_columns, | |
# search_columns=["Method"], | |
# hide_columns=[], | |
# interactive=False | |
# ) | |
# print(f"Successfully created leaderboard.") | |
# return leaderboard | |
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist()) | |
# # Define simple keywords for filtering | |
# benchmark_keywords = ["ioi", "mcqa", "arithmetic", "arc"] | |
# model_keywords = ["qwen2_5", "gpt2", "gemma2", "llama3"] | |
# # Create SmartSelectColumns instance with exact same parameters as working version | |
# smart_columns = SmartSelectColumns( | |
# benchmark_keywords=benchmark_keywords, | |
# model_keywords=model_keywords, | |
# initial_selected=["Method", "Average"], | |
# allow=True, | |
# label=None, | |
# show_label=True, | |
# info=None | |
# ) | |
# try: | |
# print("\nCreating leaderboard...") | |
# # Get groups before creating leaderboard | |
# smart_columns.get_filtered_groups(dataframe.columns) | |
# leaderboard = Leaderboard( | |
# value=dataframe, | |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)], | |
# select_columns=smart_columns, | |
# search_columns=["Method"], | |
# hide_columns=[], | |
# interactive=False | |
# ) | |
# print("Leaderboard created successfully") | |
# return leaderboard | |
# except Exception as e: | |
# print("Error creating leaderboard:", str(e)) | |
# raise | |
# def init_leaderboard_mib_subgraph(dataframe, track): | |
# """Initialize the subgraph leaderboard with group-based column selection.""" | |
# if dataframe is None or dataframe.empty: | |
# raise ValueError("Leaderboard DataFrame is empty or None.") | |
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist()) | |
# # Create selection mapping for benchmark groups | |
# selection_mapping = {} | |
# # Create benchmark groups with descriptive names | |
# for task in TasksMib_Subgraph: | |
# benchmark = task.value.benchmark | |
# # Get all columns for this benchmark's models | |
# benchmark_cols = [ | |
# f"{benchmark}_{model}" | |
# for model in task.value.models | |
# if f"{benchmark}_{model}" in dataframe.columns | |
# ] | |
# if benchmark_cols: | |
# # Use a descriptive group name as the key | |
# group_name = f"Benchmark: {benchmark.upper()}" | |
# selection_mapping[group_name] = benchmark_cols | |
# print(f"\n{group_name} maps to:", benchmark_cols) | |
# # Create model groups with descriptive names | |
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models)) | |
# for model in all_models: | |
# # Get all columns for this model across benchmarks | |
# model_cols = [ | |
# f"{task.value.benchmark}_{model}" | |
# for task in TasksMib_Subgraph | |
# if model in task.value.models | |
# and f"{task.value.benchmark}_{model}" in dataframe.columns | |
# ] | |
# if model_cols: | |
# # Use a descriptive group name as the key | |
# group_name = f"Model: {model}" | |
# selection_mapping[group_name] = model_cols | |
# print(f"\n{group_name} maps to:", model_cols) | |
# # The selection options are the group names | |
# selection_options = list(selection_mapping.keys()) | |
# print("\nSelection options:", selection_options) | |
# return Leaderboard( | |
def init_leaderboard_mib_causalgraph(dataframe, track): | |
# print("Debugging column issues:") | |
# print("\nActual DataFrame columns:") | |
# print(dataframe.columns.tolist()) | |
# Create only necessary columns | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)], | |
select_columns=SelectColumns( | |
default_selection=["Method"], # Start with just Method column | |
cant_deselect=["Method"], # Method column should always be visible | |
label="Select Columns to Display:", | |
), | |
search_columns=["Method"], | |
hide_columns=[], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
def init_leaderboard(dataframe, track): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
# filter for correct track | |
dataframe = dataframe.loc[dataframe["Track"] == track] | |
# print(f"\n\n\n dataframe is {dataframe}\n\n\n") | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(AutoEvalColumn)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=[AutoEvalColumn.model.name], | |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
def process_json(temp_file): | |
if temp_file is None: | |
return {} | |
# Handle file upload | |
try: | |
file_path = temp_file.name | |
if file_path.endswith('.gz'): | |
with gzip.open(file_path, 'rt') as f: | |
data = json.load(f) | |
else: | |
with open(file_path, 'r') as f: | |
data = json.load(f) | |
except Exception as e: | |
raise gr.Error(f"Error processing file: {str(e)}") | |
gr.Markdown("Upload successful!") | |
return data | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
# with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0): | |
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict") | |
# with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1): | |
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small") | |
# with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2): | |
# leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal") | |
# with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4): | |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
# with gr.TabItem("πΆ Submit", elem_id="llm-benchmark-tab-table", id=5): | |
# with gr.Column(): | |
# with gr.Row(): | |
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
# with gr.TabItem("Subgraph", elem_id="subgraph", id=0): | |
# leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph") | |
with gr.TabItem("Subgraph", elem_id="subgraph", id=0): | |
# Add description for filters | |
gr.Markdown(""" | |
### Filtering Options | |
Use the dropdown menus below to filter results by specific tasks or models. | |
You can combine filters to see specific task-model combinations. | |
""") | |
leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph") | |
print(f"Leaderboard is {leaderboard}") | |
# Then modify the Causal Graph tab section | |
with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1): | |
with gr.Tabs() as causalgraph_tabs: | |
with gr.TabItem("Detailed View", id=0): | |
leaderboard_detailed = init_leaderboard_mib_causalgraph( | |
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, | |
"Causal Graph" | |
) | |
with gr.TabItem("Aggregated View", id=1): | |
leaderboard_aggregated = init_leaderboard_mib_causalgraph( | |
LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, | |
"Causal Graph" | |
) | |
with gr.TabItem("Intervention Averaged", id=2): | |
leaderboard_averaged = init_leaderboard_mib_causalgraph( | |
LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED, | |
"Causal Graph" | |
) | |
# with gr.Row(): | |
# with gr.Accordion("π Citation", open=False): | |
# citation_button = gr.Textbox( | |
# value=CITATION_BUTTON_TEXT, | |
# label=CITATION_BUTTON_LABEL, | |
# lines=20, | |
# elem_id="citation-button", | |
# show_copy_button=True, | |
# ) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.launch(share=True, ssr_mode=False) |