Spaces:
Running
Running
jasonshaoshun
commited on
Commit
·
200beb2
1
Parent(s):
ef71549
debug
Browse files- app.py +234 -217
- custom-select-columns.py +300 -20
app.py
CHANGED
@@ -38,6 +38,103 @@ from src.submission.submit import add_new_eval
|
|
38 |
|
39 |
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def restart_space():
|
42 |
API.restart_space(repo_id=REPO_ID)
|
43 |
|
@@ -128,122 +225,58 @@ from src.about import TasksMib_Subgraph
|
|
128 |
|
129 |
|
130 |
|
131 |
-
def init_leaderboard_mib_subgraph(dataframe, track):
|
132 |
-
"""Initialize the subgraph leaderboard with grouped column selection by benchmark."""
|
133 |
-
if dataframe is None or dataframe.empty:
|
134 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
135 |
-
|
136 |
-
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
137 |
-
|
138 |
-
# Create groups of columns by benchmark
|
139 |
-
benchmark_groups = []
|
140 |
-
|
141 |
-
# For each benchmark in our TasksMib_Subgraph enum...
|
142 |
-
for task in TasksMib_Subgraph:
|
143 |
-
benchmark = task.value.benchmark
|
144 |
-
# Get all valid columns for this benchmark's models
|
145 |
-
benchmark_cols = [
|
146 |
-
f"{benchmark}_{model}"
|
147 |
-
for model in task.value.models
|
148 |
-
if f"{benchmark}_{model}" in dataframe.columns
|
149 |
-
]
|
150 |
-
if benchmark_cols: # Only add if we have valid columns
|
151 |
-
benchmark_groups.append(benchmark_cols)
|
152 |
-
print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
153 |
-
|
154 |
-
# Create model groups as well
|
155 |
-
model_groups = []
|
156 |
-
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
157 |
-
|
158 |
-
# For each unique model...
|
159 |
-
for model in all_models:
|
160 |
-
# Get all valid columns for this model across benchmarks
|
161 |
-
model_cols = [
|
162 |
-
f"{task.value.benchmark}_{model}"
|
163 |
-
for task in TasksMib_Subgraph
|
164 |
-
if model in task.value.models
|
165 |
-
and f"{task.value.benchmark}_{model}" in dataframe.columns
|
166 |
-
]
|
167 |
-
if model_cols: # Only add if we have valid columns
|
168 |
-
model_groups.append(model_cols)
|
169 |
-
print(f"\nModel group for {model}:", model_cols)
|
170 |
-
|
171 |
-
# Combine all groups
|
172 |
-
all_groups = benchmark_groups + model_groups
|
173 |
-
|
174 |
-
# Flatten groups for default selection (show everything initially)
|
175 |
-
all_columns = [col for group in all_groups for col in group]
|
176 |
-
print("\nAll available columns:", all_columns)
|
177 |
-
|
178 |
-
return Leaderboard(
|
179 |
-
value=dataframe,
|
180 |
-
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
181 |
-
select_columns=SelectColumns(
|
182 |
-
default_selection=all_columns, # Show all columns initially
|
183 |
-
label="Select Results:"
|
184 |
-
),
|
185 |
-
search_columns=["Method"],
|
186 |
-
hide_columns=[],
|
187 |
-
interactive=False,
|
188 |
-
)
|
189 |
-
|
190 |
-
|
191 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
192 |
-
# """Initialize the subgraph leaderboard with
|
193 |
# if dataframe is None or dataframe.empty:
|
194 |
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
195 |
|
196 |
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
197 |
|
198 |
-
# #
|
199 |
-
# # This is like creating a translation dictionary between internal names and display names
|
200 |
-
# display_mapping = {}
|
201 |
-
# for task in TasksMib_Subgraph:
|
202 |
-
# for model in task.value.models:
|
203 |
-
# field_name = f"{task.value.benchmark}_{model}"
|
204 |
-
# display_name = f"{task.value.benchmark}({model})"
|
205 |
-
# display_mapping[field_name] = display_name
|
206 |
-
|
207 |
-
# # Now when creating benchmark groups, we'll use display names
|
208 |
# benchmark_groups = []
|
|
|
|
|
209 |
# for task in TasksMib_Subgraph:
|
210 |
# benchmark = task.value.benchmark
|
|
|
211 |
# benchmark_cols = [
|
212 |
-
#
|
213 |
# for model in task.value.models
|
214 |
# if f"{benchmark}_{model}" in dataframe.columns
|
215 |
# ]
|
216 |
-
# if benchmark_cols:
|
217 |
# benchmark_groups.append(benchmark_cols)
|
218 |
# print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
219 |
|
220 |
-
# #
|
221 |
# model_groups = []
|
222 |
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
223 |
|
|
|
224 |
# for model in all_models:
|
|
|
225 |
# model_cols = [
|
226 |
-
#
|
227 |
# for task in TasksMib_Subgraph
|
228 |
# if model in task.value.models
|
229 |
# and f"{task.value.benchmark}_{model}" in dataframe.columns
|
230 |
# ]
|
231 |
-
# if model_cols:
|
232 |
# model_groups.append(model_cols)
|
233 |
# print(f"\nModel group for {model}:", model_cols)
|
234 |
|
235 |
-
# # Combine all groups
|
236 |
# all_groups = benchmark_groups + model_groups
|
|
|
|
|
237 |
# all_columns = [col for group in all_groups for col in group]
|
238 |
-
|
239 |
-
# # Important: We need to rename our DataFrame columns to match display names
|
240 |
-
# renamed_df = dataframe.rename(columns=display_mapping)
|
241 |
|
242 |
# return Leaderboard(
|
243 |
-
# value=
|
244 |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
245 |
# select_columns=SelectColumns(
|
246 |
-
# default_selection=all_columns, #
|
247 |
# label="Select Results:"
|
248 |
# ),
|
249 |
# search_columns=["Method"],
|
@@ -252,152 +285,132 @@ def init_leaderboard_mib_subgraph(dataframe, track):
|
|
252 |
# )
|
253 |
|
254 |
|
|
|
|
|
|
|
|
|
255 |
|
256 |
-
|
257 |
-
class SmartSelectColumns(gr.SelectColumns):
|
258 |
-
"""
|
259 |
-
Enhanced SelectColumns component for Gradio Leaderboard with smart filtering and mapping capabilities.
|
260 |
-
"""
|
261 |
-
def __init__(
|
262 |
-
self,
|
263 |
-
column_filters: Optional[Dict[str, List[str]]] = None,
|
264 |
-
column_mapping: Optional[Dict[str, str]] = None,
|
265 |
-
initial_selected: Optional[List[str]] = None,
|
266 |
-
*args,
|
267 |
-
**kwargs
|
268 |
-
):
|
269 |
-
"""
|
270 |
-
Initialize SmartSelectColumns with enhanced functionality.
|
271 |
-
|
272 |
-
Args:
|
273 |
-
column_filters: Dict mapping filter names to lists of substrings to match
|
274 |
-
column_mapping: Dict mapping actual column names to display names
|
275 |
-
initial_selected: List of column names to be initially selected
|
276 |
-
*args, **kwargs: Additional arguments passed to parent SelectColumns
|
277 |
-
"""
|
278 |
-
super().__init__(*args, **kwargs)
|
279 |
-
self.column_filters = column_filters or {}
|
280 |
-
self.column_mapping = column_mapping or {}
|
281 |
-
self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {}
|
282 |
-
self.initial_selected = initial_selected or []
|
283 |
-
|
284 |
-
def preprocess(self, x: List[str]) -> List[str]:
|
285 |
-
"""
|
286 |
-
Transform selected display names back to actual column names.
|
287 |
-
|
288 |
-
Args:
|
289 |
-
x: List of selected display names
|
290 |
-
|
291 |
-
Returns:
|
292 |
-
List of actual column names
|
293 |
-
"""
|
294 |
-
return [self.reverse_mapping.get(col, col) for col in x]
|
295 |
-
|
296 |
-
def postprocess(self, y: List[str]) -> List[str]:
|
297 |
-
"""
|
298 |
-
Transform actual column names to display names.
|
299 |
-
|
300 |
-
Args:
|
301 |
-
y: List of actual column names
|
302 |
-
|
303 |
-
Returns:
|
304 |
-
List of display names
|
305 |
-
"""
|
306 |
-
return [self.column_mapping.get(col, col) for col in y]
|
307 |
-
|
308 |
-
def get_filtered_columns(self, df: pd.DataFrame) -> Dict[str, List[str]]:
|
309 |
-
"""
|
310 |
-
Get columns filtered by substring matches.
|
311 |
-
|
312 |
-
Args:
|
313 |
-
df: Input DataFrame
|
314 |
-
|
315 |
-
Returns:
|
316 |
-
Dict mapping filter names to lists of matching display names
|
317 |
-
"""
|
318 |
-
filtered_cols = {}
|
319 |
-
|
320 |
-
for filter_name, substrings in self.column_filters.items():
|
321 |
-
matching_cols = []
|
322 |
-
for col in df.columns:
|
323 |
-
if any(substr.lower() in col.lower() for substr in substrings):
|
324 |
-
display_name = self.column_mapping.get(col, col)
|
325 |
-
matching_cols.append(display_name)
|
326 |
-
filtered_cols[filter_name] = matching_cols
|
327 |
-
|
328 |
-
return filtered_cols
|
329 |
-
|
330 |
-
def update(
|
331 |
-
self,
|
332 |
-
value: Union[pd.DataFrame, Dict[str, List[str]], Any],
|
333 |
-
interactive: Optional[bool] = None
|
334 |
-
) -> Dict:
|
335 |
-
"""
|
336 |
-
Update component with new values, supporting DataFrame fields.
|
337 |
-
|
338 |
-
Args:
|
339 |
-
value: DataFrame, dict of columns, or fields object
|
340 |
-
interactive: Whether component should be interactive
|
341 |
-
|
342 |
-
Returns:
|
343 |
-
Dict containing update configuration
|
344 |
-
"""
|
345 |
-
if isinstance(value, pd.DataFrame):
|
346 |
-
filtered_cols = self.get_filtered_columns(value)
|
347 |
-
choices = [self.column_mapping.get(col, col) for col in value.columns]
|
348 |
-
|
349 |
-
# Set initial selection if provided
|
350 |
-
value = self.initial_selected if self.initial_selected else choices
|
351 |
-
|
352 |
-
return {
|
353 |
-
"choices": choices,
|
354 |
-
"value": value,
|
355 |
-
"filtered_cols": filtered_cols,
|
356 |
-
"interactive": interactive if interactive is not None else self.interactive
|
357 |
-
}
|
358 |
-
|
359 |
-
# Handle fields object (e.g., from dataclass)
|
360 |
-
if hasattr(value, '__dataclass_fields__'):
|
361 |
-
field_names = [field.name for field in fields(value)]
|
362 |
-
choices = [self.column_mapping.get(name, name) for name in field_names]
|
363 |
-
return {
|
364 |
-
"choices": choices,
|
365 |
-
"value": self.initial_selected if self.initial_selected else choices,
|
366 |
-
"interactive": interactive if interactive is not None else self.interactive
|
367 |
-
}
|
368 |
-
|
369 |
-
return super().update(value, interactive)
|
370 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
-
#
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
smart_columns = SmartSelectColumns(
|
392 |
-
|
393 |
column_mapping=mappings,
|
394 |
-
initial_selected=
|
395 |
-
multiselect=True
|
396 |
)
|
397 |
|
398 |
-
|
|
|
399 |
value=renamed_df,
|
400 |
-
datatype=[c.type for c in fields(
|
401 |
select_columns=smart_columns,
|
402 |
search_columns=["Method"],
|
403 |
hide_columns=[],
|
@@ -405,6 +418,10 @@ def init_leaderboard_mib_subgraph(dataframe, track):
|
|
405 |
)
|
406 |
|
407 |
|
|
|
|
|
|
|
|
|
408 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
409 |
# """Initialize the subgraph leaderboard with group-based column selection."""
|
410 |
# if dataframe is None or dataframe.empty:
|
|
|
38 |
|
39 |
|
40 |
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
from gradio_leaderboard import SelectColumns, Leaderboard
|
51 |
+
import pandas as pd
|
52 |
+
from typing import List, Dict, Union, Optional, Any
|
53 |
+
from dataclasses import fields
|
54 |
+
|
55 |
+
class SmartSelectColumns(SelectColumns):
|
56 |
+
"""
|
57 |
+
Enhanced SelectColumns component for gradio_leaderboard with explicit column grouping.
|
58 |
+
"""
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
column_groups: Optional[Dict[str, List[str]]] = None,
|
62 |
+
column_mapping: Optional[Dict[str, str]] = None,
|
63 |
+
initial_selected: Optional[List[str]] = None,
|
64 |
+
**kwargs
|
65 |
+
):
|
66 |
+
"""
|
67 |
+
Initialize SmartSelectColumns with enhanced functionality.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
column_groups: Dict mapping group names to lists of columns in that group
|
71 |
+
column_mapping: Dict mapping actual column names to display names
|
72 |
+
initial_selected: List of columns to show initially
|
73 |
+
"""
|
74 |
+
super().__init__(**kwargs)
|
75 |
+
self.column_groups = column_groups or {}
|
76 |
+
self.column_mapping = column_mapping or {}
|
77 |
+
self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {}
|
78 |
+
self.initial_selected = initial_selected or []
|
79 |
+
|
80 |
+
def preprocess_value(self, x: List[str]) -> List[str]:
|
81 |
+
"""Transform selected display names back to actual column names."""
|
82 |
+
return [self.reverse_mapping.get(col, col) for col in x]
|
83 |
+
|
84 |
+
def postprocess_value(self, y: List[str]) -> List[str]:
|
85 |
+
"""Transform actual column names to display names."""
|
86 |
+
return [self.column_mapping.get(col, col) for col in y]
|
87 |
+
|
88 |
+
def update(
|
89 |
+
self,
|
90 |
+
value: Union[pd.DataFrame, Dict[str, List[str]], Any]
|
91 |
+
) -> Dict:
|
92 |
+
"""Update component with new values."""
|
93 |
+
if isinstance(value, pd.DataFrame):
|
94 |
+
# Get all column names and convert to display names
|
95 |
+
choices = [self.column_mapping.get(col, col) for col in value.columns]
|
96 |
+
|
97 |
+
# Use initial selection or default columns
|
98 |
+
selected = self.initial_selected if self.initial_selected else choices
|
99 |
+
|
100 |
+
# Convert column groups to use display names
|
101 |
+
filtered_cols = {}
|
102 |
+
for group_name, columns in self.column_groups.items():
|
103 |
+
filtered_cols[group_name] = [
|
104 |
+
self.column_mapping.get(col, col)
|
105 |
+
for col in columns
|
106 |
+
if col in value.columns
|
107 |
+
]
|
108 |
+
|
109 |
+
return {
|
110 |
+
"choices": choices,
|
111 |
+
"value": selected,
|
112 |
+
"filtered_cols": filtered_cols
|
113 |
+
}
|
114 |
+
|
115 |
+
# Handle fields object
|
116 |
+
if hasattr(value, '__dataclass_fields__'):
|
117 |
+
field_names = [field.name for field in fields(value)]
|
118 |
+
choices = [self.column_mapping.get(name, name) for name in field_names]
|
119 |
+
return {
|
120 |
+
"choices": choices,
|
121 |
+
"value": self.initial_selected if self.initial_selected else choices
|
122 |
+
}
|
123 |
+
|
124 |
+
return super().update(value)
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
def restart_space():
|
139 |
API.restart_space(repo_id=REPO_ID)
|
140 |
|
|
|
225 |
|
226 |
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
229 |
+
# """Initialize the subgraph leaderboard with grouped column selection by benchmark."""
|
230 |
# if dataframe is None or dataframe.empty:
|
231 |
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
232 |
|
233 |
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
234 |
|
235 |
+
# # Create groups of columns by benchmark
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
# benchmark_groups = []
|
237 |
+
|
238 |
+
# # For each benchmark in our TasksMib_Subgraph enum...
|
239 |
# for task in TasksMib_Subgraph:
|
240 |
# benchmark = task.value.benchmark
|
241 |
+
# # Get all valid columns for this benchmark's models
|
242 |
# benchmark_cols = [
|
243 |
+
# f"{benchmark}_{model}"
|
244 |
# for model in task.value.models
|
245 |
# if f"{benchmark}_{model}" in dataframe.columns
|
246 |
# ]
|
247 |
+
# if benchmark_cols: # Only add if we have valid columns
|
248 |
# benchmark_groups.append(benchmark_cols)
|
249 |
# print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
250 |
|
251 |
+
# # Create model groups as well
|
252 |
# model_groups = []
|
253 |
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
254 |
|
255 |
+
# # For each unique model...
|
256 |
# for model in all_models:
|
257 |
+
# # Get all valid columns for this model across benchmarks
|
258 |
# model_cols = [
|
259 |
+
# f"{task.value.benchmark}_{model}"
|
260 |
# for task in TasksMib_Subgraph
|
261 |
# if model in task.value.models
|
262 |
# and f"{task.value.benchmark}_{model}" in dataframe.columns
|
263 |
# ]
|
264 |
+
# if model_cols: # Only add if we have valid columns
|
265 |
# model_groups.append(model_cols)
|
266 |
# print(f"\nModel group for {model}:", model_cols)
|
267 |
|
268 |
+
# # Combine all groups
|
269 |
# all_groups = benchmark_groups + model_groups
|
270 |
+
|
271 |
+
# # Flatten groups for default selection (show everything initially)
|
272 |
# all_columns = [col for group in all_groups for col in group]
|
273 |
+
# print("\nAll available columns:", all_columns)
|
|
|
|
|
274 |
|
275 |
# return Leaderboard(
|
276 |
+
# value=dataframe,
|
277 |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
278 |
# select_columns=SelectColumns(
|
279 |
+
# default_selection=all_columns, # Show all columns initially
|
280 |
# label="Select Results:"
|
281 |
# ),
|
282 |
# search_columns=["Method"],
|
|
|
285 |
# )
|
286 |
|
287 |
|
288 |
+
def init_leaderboard_mib_subgraph(dataframe, track):
|
289 |
+
"""Initialize the subgraph leaderboard with display names for better readability."""
|
290 |
+
if dataframe is None or dataframe.empty:
|
291 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
292 |
|
293 |
+
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
+
# First, create our display name mapping
|
296 |
+
# This is like creating a translation dictionary between internal names and display names
|
297 |
+
display_mapping = {}
|
298 |
+
for task in TasksMib_Subgraph:
|
299 |
+
for model in task.value.models:
|
300 |
+
field_name = f"{task.value.benchmark}_{model}"
|
301 |
+
display_name = f"{task.value.benchmark}({model})"
|
302 |
+
display_mapping[field_name] = display_name
|
303 |
|
304 |
+
# Now when creating benchmark groups, we'll use display names
|
305 |
+
benchmark_groups = []
|
306 |
+
for task in TasksMib_Subgraph:
|
307 |
+
benchmark = task.value.benchmark
|
308 |
+
benchmark_cols = [
|
309 |
+
display_mapping[f"{benchmark}_{model}"] # Use display name from our mapping
|
310 |
+
for model in task.value.models
|
311 |
+
if f"{benchmark}_{model}" in dataframe.columns
|
312 |
+
]
|
313 |
+
if benchmark_cols:
|
314 |
+
benchmark_groups.append(benchmark_cols)
|
315 |
+
print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
316 |
+
|
317 |
+
# Similarly for model groups
|
318 |
+
model_groups = []
|
319 |
+
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
320 |
|
321 |
+
for model in all_models:
|
322 |
+
model_cols = [
|
323 |
+
display_mapping[f"{task.value.benchmark}_{model}"] # Use display name
|
324 |
+
for task in TasksMib_Subgraph
|
325 |
+
if model in task.value.models
|
326 |
+
and f"{task.value.benchmark}_{model}" in dataframe.columns
|
327 |
+
]
|
328 |
+
if model_cols:
|
329 |
+
model_groups.append(model_cols)
|
330 |
+
print(f"\nModel group for {model}:", model_cols)
|
331 |
|
332 |
+
# Combine all groups using display names
|
333 |
+
all_groups = benchmark_groups + model_groups
|
334 |
+
all_columns = [col for group in all_groups for col in group]
|
335 |
+
|
336 |
+
# Important: We need to rename our DataFrame columns to match display names
|
337 |
+
renamed_df = dataframe.rename(columns=display_mapping)
|
338 |
+
|
339 |
+
# return Leaderboard(
|
340 |
+
# value=renamed_df, # Use DataFrame with display names
|
341 |
+
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
342 |
+
# select_columns=SelectColumns(
|
343 |
+
# default_selection=all_columns, # Now contains display names
|
344 |
+
# label="Select Results:"
|
345 |
+
# ),
|
346 |
+
# search_columns=["Method"],
|
347 |
+
# hide_columns=[],
|
348 |
+
# interactive=False,
|
349 |
+
# )
|
350 |
+
# Complete column groups for both benchmarks and models
|
351 |
+
column_groups = {
|
352 |
+
# Benchmark groups
|
353 |
+
"Benchmark group for ioi": ["ioi_gpt2", "ioi_qwen2_5", "ioi_gemma2", "ioi_llama3"],
|
354 |
+
"Benchmark group for mcqa": ["mcqa_qwen2_5", "mcqa_gemma2", "mcqa_llama3"],
|
355 |
+
"Benchmark group for arithmetic_addition": ["arithmetic_addition_llama3"],
|
356 |
+
"Benchmark group for arithmetic_subtraction": ["arithmetic_subtraction_llama3"],
|
357 |
+
"Benchmark group for arc_easy": ["arc_easy_gemma2", "arc_easy_llama3"],
|
358 |
+
"Benchmark group for arc_challenge": ["arc_challenge_llama3"],
|
359 |
+
|
360 |
+
# Model groups
|
361 |
+
"Model group for qwen2_5": ["ioi_qwen2_5", "mcqa_qwen2_5"],
|
362 |
+
"Model group for gpt2": ["ioi_gpt2"],
|
363 |
+
"Model group for gemma2": ["ioi_gemma2", "mcqa_gemma2", "arc_easy_gemma2"],
|
364 |
+
"Model group for llama3": [
|
365 |
+
"ioi_llama3",
|
366 |
+
"mcqa_llama3",
|
367 |
+
"arithmetic_addition_llama3",
|
368 |
+
"arithmetic_subtraction_llama3",
|
369 |
+
"arc_easy_llama3",
|
370 |
+
"arc_challenge_llama3"
|
371 |
+
]
|
372 |
+
}
|
373 |
|
374 |
+
# # Complete mappings for more readable display names
|
375 |
+
# mappings = {
|
376 |
+
# # IOI benchmark mappings
|
377 |
+
# "ioi_llama3": "IOI (LLaMA-3)",
|
378 |
+
# "ioi_qwen2_5": "IOI (Qwen-2.5)",
|
379 |
+
# "ioi_gpt2": "IOI (GPT-2)",
|
380 |
+
# "ioi_gemma2": "IOI (Gemma-2)",
|
381 |
+
|
382 |
+
# # MCQA benchmark mappings
|
383 |
+
# "mcqa_llama3": "MCQA (LLaMA-3)",
|
384 |
+
# "mcqa_qwen2_5": "MCQA (Qwen-2.5)",
|
385 |
+
# "mcqa_gemma2": "MCQA (Gemma-2)",
|
386 |
+
|
387 |
+
# # Arithmetic benchmark mappings
|
388 |
+
# "arithmetic_addition_llama3": "Arithmetic Addition (LLaMA-3)",
|
389 |
+
# "arithmetic_subtraction_llama3": "Arithmetic Subtraction (LLaMA-3)",
|
390 |
+
|
391 |
+
# # ARC benchmark mappings
|
392 |
+
# "arc_easy_llama3": "ARC Easy (LLaMA-3)",
|
393 |
+
# "arc_easy_gemma2": "ARC Easy (Gemma-2)",
|
394 |
+
# "arc_challenge_llama3": "ARC Challenge (LLaMA-3)",
|
395 |
+
|
396 |
+
# # Other columns
|
397 |
+
# "eval_name": "Evaluation Name",
|
398 |
+
# "Method": "Method",
|
399 |
+
# "Average": "Average Score"
|
400 |
+
# }
|
401 |
+
mappings = {}
|
402 |
+
|
403 |
+
# Create SmartSelectColumns instance
|
404 |
smart_columns = SmartSelectColumns(
|
405 |
+
column_groups=column_groups,
|
406 |
column_mapping=mappings,
|
407 |
+
initial_selected=["Method", "Average"]
|
|
|
408 |
)
|
409 |
|
410 |
+
# Create Leaderboard directly
|
411 |
+
leaderboard = Leaderboard(
|
412 |
value=renamed_df,
|
413 |
+
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
414 |
select_columns=smart_columns,
|
415 |
search_columns=["Method"],
|
416 |
hide_columns=[],
|
|
|
418 |
)
|
419 |
|
420 |
|
421 |
+
|
422 |
+
|
423 |
+
|
424 |
+
|
425 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
426 |
# """Initialize the subgraph leaderboard with group-based column selection."""
|
427 |
# if dataframe is None or dataframe.empty:
|
custom-select-columns.py
CHANGED
@@ -287,25 +287,21 @@ def initialize_leaderboard(df: pd.DataFrame, column_class: Any,
|
|
287 |
Returns:
|
288 |
Configured Leaderboard instance
|
289 |
"""
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
column_mapping=mappings,
|
297 |
-
initial_selected=initial_columns,
|
298 |
-
multiselect=True
|
299 |
-
)
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
|
310 |
# Example usage
|
311 |
if __name__ == "__main__":
|
@@ -321,7 +317,7 @@ if __name__ == "__main__":
|
|
321 |
# Define filters and mappings
|
322 |
filters = {
|
323 |
"IOI Metrics": ["ioi"],
|
324 |
-
"
|
325 |
}
|
326 |
|
327 |
mappings = {
|
@@ -341,5 +337,289 @@ if __name__ == "__main__":
|
|
341 |
mappings=mappings,
|
342 |
initial_columns=["Method", "IOI Score (Type 1)"]
|
343 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
Returns:
|
288 |
Configured Leaderboard instance
|
289 |
"""
|
290 |
+
|
291 |
+
# Define filters and mappings
|
292 |
+
filters = {
|
293 |
+
"IOI Metrics": ["ioi"],
|
294 |
+
"Performance Metrics": ["performance"]
|
295 |
+
}
|
|
|
|
|
|
|
|
|
296 |
|
297 |
+
mappings = {
|
298 |
+
"ioi_score_1": "IOI Score (Type 1)",
|
299 |
+
"ioi_score_2": "IOI Score (Type 2)",
|
300 |
+
"other_metric": "Other Metric",
|
301 |
+
"performance_1": "Performance Metric 1"
|
302 |
+
}
|
303 |
+
|
304 |
+
|
305 |
|
306 |
# Example usage
|
307 |
if __name__ == "__main__":
|
|
|
317 |
# Define filters and mappings
|
318 |
filters = {
|
319 |
"IOI Metrics": ["ioi"],
|
320 |
+
"gemma2.5": ["gemma2_5`"]
|
321 |
}
|
322 |
|
323 |
mappings = {
|
|
|
337 |
mappings=mappings,
|
338 |
initial_columns=["Method", "IOI Score (Type 1)"]
|
339 |
)
|
340 |
+
|
341 |
+
|
342 |
+
# Create renamed DataFrame with display names
|
343 |
+
renamed_df = df.rename(columns=mappings)
|
344 |
+
|
345 |
+
initial_columns=["Method", "IOI Score (Type 1)"]
|
346 |
+
initial_columns=?
|
347 |
+
|
348 |
+
# Initialize SmartSelectColumns
|
349 |
+
smart_columns = SmartSelectColumns(
|
350 |
+
column_filters=filters,
|
351 |
+
column_mapping=mappings,
|
352 |
+
initial_selected=initial_columns,
|
353 |
+
multiselect=True
|
354 |
+
)
|
355 |
+
column_class=None
|
356 |
+
|
357 |
+
return gr.Leaderboard(
|
358 |
+
value=renamed_df,
|
359 |
+
datatype=[c.type for c in fields(column_class)],
|
360 |
+
select_columns=smart_columns,
|
361 |
+
search_columns=["Method"],
|
362 |
+
hide_columns=[],
|
363 |
+
interactive=False
|
364 |
+
)
|
365 |
+
|
366 |
+
demo.launch()
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
|
377 |
+
|
378 |
+
|
379 |
+
|
380 |
+
|
381 |
+
|
382 |
+
|
383 |
+
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
|
395 |
+
|
396 |
+
|
397 |
+
|
398 |
+
|
399 |
+
|
400 |
+
|
401 |
+
|
402 |
+
|
403 |
+
|
404 |
+
from gradio_leaderboard import SelectColumns, Leaderboard
|
405 |
+
import pandas as pd
|
406 |
+
from typing import List, Dict, Union, Optional, Any
|
407 |
+
from dataclasses import fields
|
408 |
+
|
409 |
+
class SmartSelectColumns(SelectColumns):
|
410 |
+
"""
|
411 |
+
Enhanced SelectColumns component for gradio_leaderboard with explicit column grouping.
|
412 |
+
"""
|
413 |
+
def __init__(
|
414 |
+
self,
|
415 |
+
column_groups: Optional[Dict[str, List[str]]] = None,
|
416 |
+
column_mapping: Optional[Dict[str, str]] = None,
|
417 |
+
initial_selected: Optional[List[str]] = None,
|
418 |
+
**kwargs
|
419 |
+
):
|
420 |
+
"""
|
421 |
+
Initialize SmartSelectColumns with enhanced functionality.
|
422 |
+
|
423 |
+
Args:
|
424 |
+
column_groups: Dict mapping group names to lists of columns in that group
|
425 |
+
column_mapping: Dict mapping actual column names to display names
|
426 |
+
initial_selected: List of columns to show initially
|
427 |
+
"""
|
428 |
+
super().__init__(**kwargs)
|
429 |
+
self.column_groups = column_groups or {}
|
430 |
+
self.column_mapping = column_mapping or {}
|
431 |
+
self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {}
|
432 |
+
self.initial_selected = initial_selected or []
|
433 |
+
|
434 |
+
def preprocess_value(self, x: List[str]) -> List[str]:
|
435 |
+
"""Transform selected display names back to actual column names."""
|
436 |
+
return [self.reverse_mapping.get(col, col) for col in x]
|
437 |
+
|
438 |
+
def postprocess_value(self, y: List[str]) -> List[str]:
|
439 |
+
"""Transform actual column names to display names."""
|
440 |
+
return [self.column_mapping.get(col, col) for col in y]
|
441 |
+
|
442 |
+
def update(
|
443 |
+
self,
|
444 |
+
value: Union[pd.DataFrame, Dict[str, List[str]], Any]
|
445 |
+
) -> Dict:
|
446 |
+
"""Update component with new values."""
|
447 |
+
if isinstance(value, pd.DataFrame):
|
448 |
+
# Get all column names and convert to display names
|
449 |
+
choices = [self.column_mapping.get(col, col) for col in value.columns]
|
450 |
+
|
451 |
+
# Use initial selection or default columns
|
452 |
+
selected = self.initial_selected if self.initial_selected else choices
|
453 |
+
|
454 |
+
# Convert column groups to use display names
|
455 |
+
filtered_cols = {}
|
456 |
+
for group_name, columns in self.column_groups.items():
|
457 |
+
filtered_cols[group_name] = [
|
458 |
+
self.column_mapping.get(col, col)
|
459 |
+
for col in columns
|
460 |
+
if col in value.columns
|
461 |
+
]
|
462 |
+
|
463 |
+
return {
|
464 |
+
"choices": choices,
|
465 |
+
"value": selected,
|
466 |
+
"filtered_cols": filtered_cols
|
467 |
+
}
|
468 |
|
469 |
+
# Handle fields object
|
470 |
+
if hasattr(value, '__dataclass_fields__'):
|
471 |
+
field_names = [field.name for field in fields(value)]
|
472 |
+
choices = [self.column_mapping.get(name, name) for name in field_names]
|
473 |
+
return {
|
474 |
+
"choices": choices,
|
475 |
+
"value": self.initial_selected if self.initial_selected else choices
|
476 |
+
}
|
477 |
+
|
478 |
+
return super().update(value)
|
479 |
+
|
480 |
+
|
481 |
+
# Example usage
|
482 |
+
if __name__ == "__main__":
|
483 |
+
# Sample DataFrame
|
484 |
+
# df = pd.DataFrame({
|
485 |
+
# "eval_name": ["test1", "test2", "test3"],
|
486 |
+
# "Method": ["method1", "method2", "method3"],
|
487 |
+
# "ioi_llama3": [0.1, 0.2, 0.3],
|
488 |
+
# "ioi_qwen2_5": [0.4, 0.5, 0.6],
|
489 |
+
# "ioi_gpt2": [0.7, 0.8, 0.9],
|
490 |
+
# "mcqa_llama3": [0.2, 0.3, 0.4],
|
491 |
+
# "Average": [0.35, 0.45, 0.55]
|
492 |
+
# })
|
493 |
+
|
494 |
+
# Complete column groups for both benchmarks and models
|
495 |
+
column_groups = {
|
496 |
+
# Benchmark groups
|
497 |
+
"Benchmark group for ioi": ["ioi_gpt2", "ioi_qwen2_5", "ioi_gemma2", "ioi_llama3"],
|
498 |
+
"Benchmark group for mcqa": ["mcqa_qwen2_5", "mcqa_gemma2", "mcqa_llama3"],
|
499 |
+
"Benchmark group for arithmetic_addition": ["arithmetic_addition_llama3"],
|
500 |
+
"Benchmark group for arithmetic_subtraction": ["arithmetic_subtraction_llama3"],
|
501 |
+
"Benchmark group for arc_easy": ["arc_easy_gemma2", "arc_easy_llama3"],
|
502 |
+
"Benchmark group for arc_challenge": ["arc_challenge_llama3"],
|
503 |
+
|
504 |
+
# Model groups
|
505 |
+
"Model group for qwen2_5": ["ioi_qwen2_5", "mcqa_qwen2_5"],
|
506 |
+
"Model group for gpt2": ["ioi_gpt2"],
|
507 |
+
"Model group for gemma2": ["ioi_gemma2", "mcqa_gemma2", "arc_easy_gemma2"],
|
508 |
+
"Model group for llama3": [
|
509 |
+
"ioi_llama3",
|
510 |
+
"mcqa_llama3",
|
511 |
+
"arithmetic_addition_llama3",
|
512 |
+
"arithmetic_subtraction_llama3",
|
513 |
+
"arc_easy_llama3",
|
514 |
+
"arc_challenge_llama3"
|
515 |
+
]
|
516 |
+
}
|
517 |
+
|
518 |
+
# Complete mappings for more readable display names
|
519 |
+
mappings = {
|
520 |
+
# IOI benchmark mappings
|
521 |
+
"ioi_llama3": "IOI (LLaMA-3)",
|
522 |
+
"ioi_qwen2_5": "IOI (Qwen-2.5)",
|
523 |
+
"ioi_gpt2": "IOI (GPT-2)",
|
524 |
+
"ioi_gemma2": "IOI (Gemma-2)",
|
525 |
+
|
526 |
+
# MCQA benchmark mappings
|
527 |
+
"mcqa_llama3": "MCQA (LLaMA-3)",
|
528 |
+
"mcqa_qwen2_5": "MCQA (Qwen-2.5)",
|
529 |
+
"mcqa_gemma2": "MCQA (Gemma-2)",
|
530 |
+
|
531 |
+
# Arithmetic benchmark mappings
|
532 |
+
"arithmetic_addition_llama3": "Arithmetic Addition (LLaMA-3)",
|
533 |
+
"arithmetic_subtraction_llama3": "Arithmetic Subtraction (LLaMA-3)",
|
534 |
+
|
535 |
+
# ARC benchmark mappings
|
536 |
+
"arc_easy_llama3": "ARC Easy (LLaMA-3)",
|
537 |
+
"arc_easy_gemma2": "ARC Easy (Gemma-2)",
|
538 |
+
"arc_challenge_llama3": "ARC Challenge (LLaMA-3)",
|
539 |
+
|
540 |
+
# Other columns
|
541 |
+
"eval_name": "Evaluation Name",
|
542 |
+
"Method": "Method",
|
543 |
+
"Average": "Average Score"
|
544 |
+
}
|
545 |
+
|
546 |
+
# Create SmartSelectColumns instance
|
547 |
+
smart_columns = SmartSelectColumns(
|
548 |
+
column_groups=column_groups,
|
549 |
+
column_mapping=mappings,
|
550 |
+
initial_selected=["Method", "Average"]
|
551 |
+
)
|
552 |
+
|
553 |
+
# Create Leaderboard directly
|
554 |
+
leaderboard = Leaderboard(
|
555 |
+
value=df,
|
556 |
+
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
557 |
+
select_columns=smart_columns,
|
558 |
+
search_columns=["Method"],
|
559 |
+
hide_columns=[],
|
560 |
+
interactive=False
|
561 |
+
)
|
562 |
+
|
563 |
+
|
564 |
+
|
565 |
+
|
566 |
+
|
567 |
+
|
568 |
+
|
569 |
+
|
570 |
+
|
571 |
+
|
572 |
+
|
573 |
+
|
574 |
+
|
575 |
+
|
576 |
+
|
577 |
+
|
578 |
+
|
579 |
+
|
580 |
+
|
581 |
+
|
582 |
+
|
583 |
+
|
584 |
+
|
585 |
+
|
586 |
+
|
587 |
+
|
588 |
+
|
589 |
+
|
590 |
+
|
591 |
+
|
592 |
+
|
593 |
+
|
594 |
+
|
595 |
+
Debugging DataFrame columns: ['eval_name', 'Method', 'ioi_llama3', 'ioi_qwen2_5', 'ioi_gpt2', 'ioi_gemma2', 'mcqa_llama3', 'mcqa_qwen2_5', 'mcqa_gemma2', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_llama3', 'arc_easy_gemma2', 'arc_challenge_llama3', 'Average']
|
596 |
+
|
597 |
+
Benchmark group for ioi: ['ioi_gpt2', 'ioi_qwen2_5', 'ioi_gemma2', 'ioi_llama3']
|
598 |
+
|
599 |
+
Benchmark group for mcqa: ['mcqa_qwen2_5', 'mcqa_gemma2', 'mcqa_llama3']
|
600 |
+
|
601 |
+
Benchmark group for arithmetic_addition: ['arithmetic_addition_llama3']
|
602 |
+
|
603 |
+
Benchmark group for arithmetic_subtraction: ['arithmetic_subtraction_llama3']
|
604 |
+
|
605 |
+
Benchmark group for arc_easy: ['arc_easy_gemma2', 'arc_easy_llama3']
|
606 |
+
|
607 |
+
Benchmark group for arc_challenge: ['arc_challenge_llama3']
|
608 |
+
|
609 |
+
Model group for qwen2_5: ['ioi_qwen2_5', 'mcqa_qwen2_5']
|
610 |
+
|
611 |
+
Model group for gpt2: ['ioi_gpt2']
|
612 |
+
|
613 |
+
Model group for gemma2: ['ioi_gemma2', 'mcqa_gemma2', 'arc_easy_gemma2']
|
614 |
+
|
615 |
+
Model group for llama3: ['ioi_llama3', 'mcqa_llama3', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_llama3', 'arc_challenge_llama3']
|
616 |
+
|
617 |
+
All available columns: ['ioi_gpt2', 'ioi_qwen2_5', 'ioi_gemma2', 'ioi_llama3', 'mcqa_qwen2_5', 'mcqa_gemma2', 'mcqa_llama3', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_gemma2', 'arc_easy_llama3', 'arc_challenge_llama3', 'ioi_qwen2_5', 'mcqa_qwen2_5', 'ioi_gpt2', 'ioi_gemma2', 'mcqa_gemma2', 'arc_easy_gemma2', 'ioi_llama3', 'mcqa_llama3', 'arithmetic_addition_llama3', 'arithmetic_subtraction_llama3', 'arc_easy_llama3', 'arc_challenge_llama3']
|
618 |
+
* Running on local URL: http://0.0.0.0:7860
|
619 |
+
/usr/local/lib/python3.10/site-packages/gradio/blocks.py:2634: UserWarning: Setting share=True is not supported on Hugging Face Spaces
|
620 |
+
warnings.warn(
|
621 |
+
|
622 |
+
To create a public link, set `share=True` in `launch()`.
|
623 |
+
|
624 |
+
|
625 |
+
|