Spaces:
Running
Running
jasonshaoshun
commited on
Commit
·
66f5701
1
Parent(s):
c50d688
debug
Browse files
app.py
CHANGED
@@ -127,386 +127,117 @@ LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGAT
|
|
127 |
from src.about import TasksMib_Subgraph
|
128 |
|
129 |
|
130 |
-
# def init_leaderboard_mib_subgraph(dataframe, track):
|
131 |
-
# if dataframe is None or dataframe.empty:
|
132 |
-
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
133 |
-
|
134 |
-
# # Get unique tasks and models for filters
|
135 |
-
# tasks = list(set(task.value.benchmark for task in TasksMib_Subgraph))
|
136 |
-
# models = list(set(
|
137 |
-
# model
|
138 |
-
# for task in TasksMib_Subgraph
|
139 |
-
# for model in task.value.models
|
140 |
-
# ))
|
141 |
-
|
142 |
-
# return Leaderboard(
|
143 |
-
# value=dataframe,
|
144 |
-
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
145 |
-
# select_columns=SelectColumns(
|
146 |
-
# default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default],
|
147 |
-
# cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden],
|
148 |
-
# label="Select Columns to Display:",
|
149 |
-
# ),
|
150 |
-
# column_filters=[
|
151 |
-
# ColumnFilter(
|
152 |
-
# column="task_filter",
|
153 |
-
# choices=tasks,
|
154 |
-
# label="Filter by Task:",
|
155 |
-
# default=None
|
156 |
-
# ),
|
157 |
-
# ColumnFilter(
|
158 |
-
# column="model_filter",
|
159 |
-
# choices=models,
|
160 |
-
# label="Filter by Model:",
|
161 |
-
# default=None
|
162 |
-
# )
|
163 |
-
# ],
|
164 |
-
# search_columns=["Method"],
|
165 |
-
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
|
166 |
-
# bool_checkboxgroup_label="Hide models",
|
167 |
-
# interactive=False,
|
168 |
-
# )
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
# def init_leaderboard_mib_subgraph(dataframe, track):
|
173 |
-
# if dataframe is None or dataframe.empty:
|
174 |
-
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
175 |
-
|
176 |
-
# # Add filter columns to display
|
177 |
-
# dataframe['Task'] = dataframe.apply(
|
178 |
-
# lambda row: [task.value.benchmark for task in TasksMib_Subgraph
|
179 |
-
# if any(f"{task.value.benchmark}_{model}" in row.index
|
180 |
-
# for model in task.value.models)][0],
|
181 |
-
# axis=1
|
182 |
-
# )
|
183 |
-
|
184 |
-
# dataframe['Model'] = dataframe.apply(
|
185 |
-
# lambda row: [model for task in TasksMib_Subgraph
|
186 |
-
# for model in task.value.models
|
187 |
-
# if f"{task.value.benchmark}_{model}" in row.index][0],
|
188 |
-
# axis=1
|
189 |
-
# )
|
190 |
-
|
191 |
-
# return Leaderboard(
|
192 |
-
# value=dataframe,
|
193 |
-
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
194 |
-
# select_columns=SelectColumns(
|
195 |
-
# default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default],
|
196 |
-
# cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden],
|
197 |
-
# label="Select Columns to Display:",
|
198 |
-
# ),
|
199 |
-
# search_columns=["Method", "Task", "Model"], # Add Task and Model to searchable columns
|
200 |
-
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
|
201 |
-
# bool_checkboxgroup_label="Hide models",
|
202 |
-
# interactive=False,
|
203 |
-
# )
|
204 |
-
|
205 |
-
|
206 |
|
207 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
208 |
-
# """Initialize the subgraph leaderboard with grouped column selection."""
|
209 |
# if dataframe is None or dataframe.empty:
|
210 |
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
211 |
|
212 |
-
#
|
213 |
-
# tasks = TasksMib_Subgraph.get_all_tasks()
|
214 |
-
# models = TasksMib_Subgraph.get_all_models()
|
215 |
-
|
216 |
-
# # Create a mapping from selection to actual column names
|
217 |
-
# selection_map = {}
|
218 |
|
219 |
-
# #
|
220 |
-
#
|
221 |
-
# # For each task, find all valid task_model combinations
|
222 |
-
# valid_combos = []
|
223 |
-
# for model in models:
|
224 |
-
# col_name = f"{task}_{model}"
|
225 |
-
# if col_name in dataframe.columns:
|
226 |
-
# valid_combos.append(col_name)
|
227 |
-
# if valid_combos:
|
228 |
-
# selection_map[task] = valid_combos
|
229 |
|
230 |
-
# #
|
231 |
-
# for model in models:
|
232 |
-
# # For each model, find all valid task_model combinations
|
233 |
-
# valid_combos = []
|
234 |
-
# for task in tasks:
|
235 |
-
# col_name = f"{task}_{model}"
|
236 |
-
# if col_name in dataframe.columns:
|
237 |
-
# valid_combos.append(col_name)
|
238 |
-
# if valid_combos:
|
239 |
-
# selection_map[model] = valid_combos
|
240 |
-
|
241 |
-
# return Leaderboard(
|
242 |
-
# value=dataframe,
|
243 |
-
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
244 |
-
# select_columns=SelectColumns(
|
245 |
-
# choices=[tasks, models], # Two groups of choices
|
246 |
-
# labels=["Tasks", "Models"], # Labels for each group
|
247 |
-
# default_selection=[*tasks, *models], # Show everything by default
|
248 |
-
# cant_deselect=["Method"], # Method column always visible
|
249 |
-
# label="Filter by Tasks or Models:",
|
250 |
-
# selection_map=selection_map # Map selections to actual columns
|
251 |
-
# ),
|
252 |
-
# search_columns=["Method"],
|
253 |
-
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
|
254 |
-
# bool_checkboxgroup_label="Hide models",
|
255 |
-
# interactive=False,
|
256 |
-
# )
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
# def init_leaderboard_mib_subgraph(dataframe, track):
|
261 |
-
# """Initialize the subgraph leaderboard with grouped column selection for gradio-leaderboard 0.0.13"""
|
262 |
-
# if dataframe is None or dataframe.empty:
|
263 |
-
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
264 |
-
|
265 |
-
# # Get all unique tasks and models
|
266 |
-
# tasks = [task.value.benchmark for task in TasksMib_Subgraph]
|
267 |
-
# models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
268 |
-
|
269 |
-
# # Create two selection groups: one for tasks and one for models
|
270 |
-
# # In 0.0.13, we can only have one SelectColumns, so we'll combine them
|
271 |
-
# selection_choices = [
|
272 |
-
# *[f"Task: {task}" for task in tasks], # Prefix with 'Task:' for clarity
|
273 |
-
# *[f"Model: {model}" for model in models] # Prefix with 'Model:' for clarity
|
274 |
-
# ]
|
275 |
-
|
276 |
-
# return Leaderboard(
|
277 |
-
# value=dataframe,
|
278 |
-
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
279 |
-
# select_columns=SelectColumns(
|
280 |
-
# default_selection=selection_choices, # Show all by default
|
281 |
-
# choices=selection_choices,
|
282 |
-
# cant_deselect=["Method"], # Method column always visible
|
283 |
-
# label="Select Tasks or Models:",
|
284 |
-
# ),
|
285 |
-
# search_columns=["Method"],
|
286 |
-
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
|
287 |
-
# bool_checkboxgroup_label="Hide models",
|
288 |
-
# interactive=False,
|
289 |
-
# )
|
290 |
-
|
291 |
-
|
292 |
-
# def init_leaderboard_mib_subgraph(dataframe, track):
|
293 |
-
# """Initialize the subgraph leaderboard focusing only on task and model filtering.
|
294 |
-
|
295 |
-
# This implementation creates a focused view where users can select which task-model
|
296 |
-
# combinations they want to see, making the analysis of results more straightforward.
|
297 |
-
# """
|
298 |
-
# if dataframe is None or dataframe.empty:
|
299 |
-
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
300 |
-
|
301 |
-
# # Get all task-model combinations that actually exist in our data
|
302 |
-
# task_model_columns = []
|
303 |
# for task in TasksMib_Subgraph:
|
304 |
-
#
|
305 |
-
#
|
306 |
-
#
|
307 |
-
#
|
308 |
-
|
309 |
-
#
|
310 |
-
#
|
311 |
-
#
|
312 |
-
#
|
313 |
-
#
|
314 |
-
|
315 |
-
#
|
316 |
-
#
|
317 |
-
# hide_columns=[], # We don't need to hide any columns
|
318 |
-
# bool_checkboxgroup_label="Hide models",
|
319 |
-
# interactive=False,
|
320 |
-
# )
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
# def init_leaderboard_mib_subgraph(dataframe, track):
|
330 |
-
# """Initialize the subgraph leaderboard with verified task/model column selection"""
|
331 |
-
# if dataframe is None or dataframe.empty:
|
332 |
-
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
333 |
-
|
334 |
-
# # First, let's identify which columns actually exist in our dataframe
|
335 |
-
# print("Available columns in dataframe:", dataframe.columns.tolist())
|
336 |
-
|
337 |
-
# # Create task selections based on TasksMib_Subgraph definition
|
338 |
-
# task_selections = []
|
339 |
-
# for task in TasksMib_Subgraph:
|
340 |
-
# task_cols = []
|
341 |
-
# for model in task.value.models:
|
342 |
-
# col_name = f"{task.value.benchmark}_{model}"
|
343 |
-
# if col_name in dataframe.columns:
|
344 |
-
# task_cols.append(col_name)
|
345 |
-
|
346 |
-
# if task_cols: # Only add tasks that have data
|
347 |
-
# print(f"Task {task.value.benchmark} has columns:", task_cols)
|
348 |
-
# task_selections.append(f"Task: {task.value.benchmark}")
|
349 |
-
|
350 |
-
# # Create model selections by checking which models appear in columns
|
351 |
-
# model_selections = []
|
352 |
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
353 |
|
|
|
354 |
# for model in all_models:
|
355 |
-
#
|
356 |
-
#
|
357 |
-
#
|
358 |
-
#
|
359 |
-
#
|
360 |
-
#
|
361 |
-
|
362 |
-
# if model_cols: # Only add
|
363 |
-
#
|
364 |
-
#
|
365 |
-
|
366 |
-
# # Combine all
|
367 |
-
#
|
368 |
-
|
369 |
-
|
370 |
-
#
|
371 |
-
# print("\
|
372 |
-
# print("DataFrame columns:", dataframe.columns.tolist())
|
373 |
-
# print("DataFrame shape:", dataframe.shape)
|
374 |
-
# print("DataFrame head:\n", dataframe.head())
|
375 |
-
|
376 |
-
# return Leaderboard(
|
377 |
-
# value=dataframe,
|
378 |
-
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
379 |
-
# select_columns=SelectColumns(
|
380 |
-
# default_selection=selections,
|
381 |
-
# label="Select Tasks or Models:"
|
382 |
-
# ),
|
383 |
-
# search_columns=["Method"],
|
384 |
-
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
|
385 |
-
# bool_checkboxgroup_label="Hide models",
|
386 |
-
# interactive=False,
|
387 |
-
# )
|
388 |
-
|
389 |
|
390 |
-
|
391 |
-
# def init_leaderboard_mib_subgraph(dataframe, track):
|
392 |
-
# """Initialize the subgraph leaderboard with benchmark and model filtering capabilities."""
|
393 |
-
# if dataframe is None or dataframe.empty:
|
394 |
-
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
395 |
-
|
396 |
-
# # Print DataFrame information for debugging
|
397 |
-
# # print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
398 |
-
|
399 |
-
# # Get result columns (excluding Method and Average)
|
400 |
-
# result_columns = [col for col in dataframe.columns
|
401 |
-
# if col not in ['Method', 'Average', 'eval_name'] and '_' in col]
|
402 |
-
|
403 |
-
# # Create benchmark and model selections
|
404 |
-
# benchmarks = set()
|
405 |
-
# models = set()
|
406 |
-
|
407 |
-
# print(f"\nDebugging Result Columns: {result_columns}")
|
408 |
-
# # Extract unique benchmarks and models from column names
|
409 |
-
# for col in result_columns:
|
410 |
-
# print(f"col is {col}")
|
411 |
-
# benchmark, model = col.split('_', maxsplit=1)
|
412 |
-
# benchmarks.add(benchmark)
|
413 |
-
# models.add(model)
|
414 |
-
# print(f"benchmark is {benchmark} and model is {model}")
|
415 |
-
|
416 |
-
# # Create selection groups
|
417 |
-
# benchmark_selections = {
|
418 |
-
# # For each benchmark, store which columns should be shown
|
419 |
-
# benchmark: [col for col in result_columns if col.startswith(f"{benchmark}_")]
|
420 |
-
# for benchmark in benchmarks
|
421 |
-
# }
|
422 |
-
|
423 |
-
# model_selections = {
|
424 |
-
# # For each model, store which columns should be shown
|
425 |
-
# model: [col for col in result_columns if col.startswith(f"_{model}")]
|
426 |
-
# for model in models
|
427 |
-
# }
|
428 |
-
|
429 |
-
# # Combine the selection mappings
|
430 |
-
# selection_groups = {
|
431 |
-
# **benchmark_selections,
|
432 |
-
# **model_selections
|
433 |
-
# }
|
434 |
-
|
435 |
-
# print("\nDebugging Selection Groups:")
|
436 |
-
# print("Benchmarks:", benchmark_selections.keys())
|
437 |
-
# print("Models:", model_selections.keys())
|
438 |
-
|
439 |
-
# # Convert keys to list for selection options
|
440 |
-
# selection_options = list(selection_groups.keys())
|
441 |
-
|
442 |
# return Leaderboard(
|
443 |
# value=dataframe,
|
444 |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
445 |
# select_columns=SelectColumns(
|
446 |
-
# default_selection=
|
447 |
-
# label="
|
448 |
# ),
|
449 |
# search_columns=["Method"],
|
450 |
# hide_columns=[],
|
451 |
# interactive=False,
|
452 |
# )
|
453 |
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
def init_leaderboard_mib_subgraph(dataframe, track):
|
458 |
-
"""Initialize the subgraph leaderboard with
|
459 |
if dataframe is None or dataframe.empty:
|
460 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
461 |
|
462 |
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
463 |
|
464 |
-
# Create
|
465 |
-
|
466 |
|
467 |
-
#
|
468 |
for task in TasksMib_Subgraph:
|
469 |
benchmark = task.value.benchmark
|
470 |
-
# Get all
|
471 |
benchmark_cols = [
|
472 |
f"{benchmark}_{model}"
|
473 |
for model in task.value.models
|
474 |
if f"{benchmark}_{model}" in dataframe.columns
|
475 |
]
|
476 |
-
if benchmark_cols:
|
477 |
-
|
478 |
-
|
|
|
|
|
479 |
|
480 |
-
# Create model groups
|
481 |
-
model_groups = []
|
482 |
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
483 |
-
|
484 |
-
# For each unique model...
|
485 |
for model in all_models:
|
486 |
-
# Get all
|
487 |
model_cols = [
|
488 |
f"{task.value.benchmark}_{model}"
|
489 |
for task in TasksMib_Subgraph
|
490 |
if model in task.value.models
|
491 |
and f"{task.value.benchmark}_{model}" in dataframe.columns
|
492 |
]
|
493 |
-
if model_cols:
|
494 |
-
|
495 |
-
|
|
|
|
|
496 |
|
497 |
-
#
|
498 |
-
|
499 |
-
|
500 |
-
# Flatten groups for default selection (show everything initially)
|
501 |
-
all_columns = [col for group in all_groups for col in group]
|
502 |
-
print("\nAll available columns:", all_columns)
|
503 |
|
504 |
return Leaderboard(
|
505 |
value=dataframe,
|
506 |
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
507 |
select_columns=SelectColumns(
|
508 |
-
default_selection=
|
509 |
-
label="Select
|
510 |
),
|
511 |
search_columns=["Method"],
|
512 |
hide_columns=[],
|
|
|
127 |
from src.about import TasksMib_Subgraph
|
128 |
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
# def init_leaderboard_mib_subgraph(dataframe, track):
|
132 |
+
# """Initialize the subgraph leaderboard with grouped column selection by benchmark."""
|
133 |
# if dataframe is None or dataframe.empty:
|
134 |
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
135 |
|
136 |
+
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
# # Create groups of columns by benchmark
|
139 |
+
# benchmark_groups = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
# # For each benchmark in our TasksMib_Subgraph enum...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
# for task in TasksMib_Subgraph:
|
143 |
+
# benchmark = task.value.benchmark
|
144 |
+
# # Get all valid columns for this benchmark's models
|
145 |
+
# benchmark_cols = [
|
146 |
+
# f"{benchmark}_{model}"
|
147 |
+
# for model in task.value.models
|
148 |
+
# if f"{benchmark}_{model}" in dataframe.columns
|
149 |
+
# ]
|
150 |
+
# if benchmark_cols: # Only add if we have valid columns
|
151 |
+
# benchmark_groups.append(benchmark_cols)
|
152 |
+
# print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
153 |
+
|
154 |
+
# # Create model groups as well
|
155 |
+
# model_groups = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
157 |
|
158 |
+
# # For each unique model...
|
159 |
# for model in all_models:
|
160 |
+
# # Get all valid columns for this model across benchmarks
|
161 |
+
# model_cols = [
|
162 |
+
# f"{task.value.benchmark}_{model}"
|
163 |
+
# for task in TasksMib_Subgraph
|
164 |
+
# if model in task.value.models
|
165 |
+
# and f"{task.value.benchmark}_{model}" in dataframe.columns
|
166 |
+
# ]
|
167 |
+
# if model_cols: # Only add if we have valid columns
|
168 |
+
# model_groups.append(model_cols)
|
169 |
+
# print(f"\nModel group for {model}:", model_cols)
|
170 |
+
|
171 |
+
# # Combine all groups
|
172 |
+
# all_groups = benchmark_groups + model_groups
|
173 |
+
|
174 |
+
# # Flatten groups for default selection (show everything initially)
|
175 |
+
# all_columns = [col for group in all_groups for col in group]
|
176 |
+
# print("\nAll available columns:", all_columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
# return Leaderboard(
|
179 |
# value=dataframe,
|
180 |
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
181 |
# select_columns=SelectColumns(
|
182 |
+
# default_selection=all_columns, # Show all columns initially
|
183 |
+
# label="Select Results:"
|
184 |
# ),
|
185 |
# search_columns=["Method"],
|
186 |
# hide_columns=[],
|
187 |
# interactive=False,
|
188 |
# )
|
189 |
|
|
|
|
|
|
|
190 |
def init_leaderboard_mib_subgraph(dataframe, track):
|
191 |
+
"""Initialize the subgraph leaderboard with group-based column selection."""
|
192 |
if dataframe is None or dataframe.empty:
|
193 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
194 |
|
195 |
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
196 |
|
197 |
+
# Create selection mapping for benchmark groups
|
198 |
+
selection_mapping = {}
|
199 |
|
200 |
+
# Create benchmark groups with descriptive names
|
201 |
for task in TasksMib_Subgraph:
|
202 |
benchmark = task.value.benchmark
|
203 |
+
# Get all columns for this benchmark's models
|
204 |
benchmark_cols = [
|
205 |
f"{benchmark}_{model}"
|
206 |
for model in task.value.models
|
207 |
if f"{benchmark}_{model}" in dataframe.columns
|
208 |
]
|
209 |
+
if benchmark_cols:
|
210 |
+
# Use a descriptive group name as the key
|
211 |
+
group_name = f"Benchmark: {benchmark.upper()}"
|
212 |
+
selection_mapping[group_name] = benchmark_cols
|
213 |
+
print(f"\n{group_name} maps to:", benchmark_cols)
|
214 |
|
215 |
+
# Create model groups with descriptive names
|
|
|
216 |
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
|
|
|
|
217 |
for model in all_models:
|
218 |
+
# Get all columns for this model across benchmarks
|
219 |
model_cols = [
|
220 |
f"{task.value.benchmark}_{model}"
|
221 |
for task in TasksMib_Subgraph
|
222 |
if model in task.value.models
|
223 |
and f"{task.value.benchmark}_{model}" in dataframe.columns
|
224 |
]
|
225 |
+
if model_cols:
|
226 |
+
# Use a descriptive group name as the key
|
227 |
+
group_name = f"Model: {model}"
|
228 |
+
selection_mapping[group_name] = model_cols
|
229 |
+
print(f"\n{group_name} maps to:", model_cols)
|
230 |
|
231 |
+
# The selection options are the group names
|
232 |
+
selection_options = list(selection_mapping.keys())
|
233 |
+
print("\nSelection options:", selection_options)
|
|
|
|
|
|
|
234 |
|
235 |
return Leaderboard(
|
236 |
value=dataframe,
|
237 |
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
238 |
select_columns=SelectColumns(
|
239 |
+
default_selection=selection_options, # Show all groups by default
|
240 |
+
label="Select Benchmark or Model Groups:"
|
241 |
),
|
242 |
search_columns=["Method"],
|
243 |
hide_columns=[],
|