Spaces:
Running
Running
jasonshaoshun
commited on
Commit
·
cc32e03
1
Parent(s):
66f5701
debug
Browse files
app.py
CHANGED
@@ -128,122 +128,122 @@ from src.about import TasksMib_Subgraph
|
|
128 |
|
129 |
|
130 |
|
131 |
-
# def init_leaderboard_mib_subgraph(dataframe, track):
|
132 |
-
# """Initialize the subgraph leaderboard with grouped column selection by benchmark."""
|
133 |
-
# if dataframe is None or dataframe.empty:
|
134 |
-
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
135 |
-
|
136 |
-
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
137 |
-
|
138 |
-
# # Create groups of columns by benchmark
|
139 |
-
# benchmark_groups = []
|
140 |
-
|
141 |
-
# # For each benchmark in our TasksMib_Subgraph enum...
|
142 |
-
# for task in TasksMib_Subgraph:
|
143 |
-
# benchmark = task.value.benchmark
|
144 |
-
# # Get all valid columns for this benchmark's models
|
145 |
-
# benchmark_cols = [
|
146 |
-
# f"{benchmark}_{model}"
|
147 |
-
# for model in task.value.models
|
148 |
-
# if f"{benchmark}_{model}" in dataframe.columns
|
149 |
-
# ]
|
150 |
-
# if benchmark_cols: # Only add if we have valid columns
|
151 |
-
# benchmark_groups.append(benchmark_cols)
|
152 |
-
# print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
153 |
-
|
154 |
-
# # Create model groups as well
|
155 |
-
# model_groups = []
|
156 |
-
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
157 |
-
|
158 |
-
# # For each unique model...
|
159 |
-
# for model in all_models:
|
160 |
-
# # Get all valid columns for this model across benchmarks
|
161 |
-
# model_cols = [
|
162 |
-
# f"{task.value.benchmark}_{model}"
|
163 |
-
# for task in TasksMib_Subgraph
|
164 |
-
# if model in task.value.models
|
165 |
-
# and f"{task.value.benchmark}_{model}" in dataframe.columns
|
166 |
-
# ]
|
167 |
-
# if model_cols: # Only add if we have valid columns
|
168 |
-
# model_groups.append(model_cols)
|
169 |
-
# print(f"\nModel group for {model}:", model_cols)
|
170 |
-
|
171 |
-
# # Combine all groups
|
172 |
-
# all_groups = benchmark_groups + model_groups
|
173 |
-
|
174 |
-
# # Flatten groups for default selection (show everything initially)
|
175 |
-
# all_columns = [col for group in all_groups for col in group]
|
176 |
-
# print("\nAll available columns:", all_columns)
|
177 |
-
|
178 |
-
# return Leaderboard(
|
179 |
-
# value=dataframe,
|
180 |
-
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
181 |
-
# select_columns=SelectColumns(
|
182 |
-
# default_selection=all_columns, # Show all columns initially
|
183 |
-
# label="Select Results:"
|
184 |
-
# ),
|
185 |
-
# search_columns=["Method"],
|
186 |
-
# hide_columns=[],
|
187 |
-
# interactive=False,
|
188 |
-
# )
|
189 |
-
|
190 |
def init_leaderboard_mib_subgraph(dataframe, track):
|
191 |
-
"""Initialize the subgraph leaderboard with
|
192 |
if dataframe is None or dataframe.empty:
|
193 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
194 |
|
195 |
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
196 |
|
197 |
-
# Create
|
198 |
-
|
199 |
|
200 |
-
#
|
201 |
for task in TasksMib_Subgraph:
|
202 |
benchmark = task.value.benchmark
|
203 |
-
# Get all columns for this benchmark's models
|
204 |
benchmark_cols = [
|
205 |
f"{benchmark}_{model}"
|
206 |
for model in task.value.models
|
207 |
if f"{benchmark}_{model}" in dataframe.columns
|
208 |
]
|
209 |
-
if benchmark_cols:
|
210 |
-
|
211 |
-
|
212 |
-
selection_mapping[group_name] = benchmark_cols
|
213 |
-
print(f"\n{group_name} maps to:", benchmark_cols)
|
214 |
|
215 |
-
# Create model groups
|
|
|
216 |
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
|
|
|
|
217 |
for model in all_models:
|
218 |
-
# Get all columns for this model across benchmarks
|
219 |
model_cols = [
|
220 |
f"{task.value.benchmark}_{model}"
|
221 |
for task in TasksMib_Subgraph
|
222 |
if model in task.value.models
|
223 |
and f"{task.value.benchmark}_{model}" in dataframe.columns
|
224 |
]
|
225 |
-
if model_cols:
|
226 |
-
|
227 |
-
|
228 |
-
selection_mapping[group_name] = model_cols
|
229 |
-
print(f"\n{group_name} maps to:", model_cols)
|
230 |
|
231 |
-
#
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
234 |
|
235 |
return Leaderboard(
|
236 |
value=dataframe,
|
237 |
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
238 |
select_columns=SelectColumns(
|
239 |
-
default_selection=
|
240 |
-
label="Select
|
241 |
),
|
242 |
search_columns=["Method"],
|
243 |
hide_columns=[],
|
244 |
interactive=False,
|
245 |
)
|
246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
|
249 |
|
|
|
128 |
|
129 |
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
def init_leaderboard_mib_subgraph(dataframe, track):
|
132 |
+
"""Initialize the subgraph leaderboard with grouped column selection by benchmark."""
|
133 |
if dataframe is None or dataframe.empty:
|
134 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
135 |
|
136 |
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
137 |
|
138 |
+
# Create groups of columns by benchmark
|
139 |
+
benchmark_groups = []
|
140 |
|
141 |
+
# For each benchmark in our TasksMib_Subgraph enum...
|
142 |
for task in TasksMib_Subgraph:
|
143 |
benchmark = task.value.benchmark
|
144 |
+
# Get all valid columns for this benchmark's models
|
145 |
benchmark_cols = [
|
146 |
f"{benchmark}_{model}"
|
147 |
for model in task.value.models
|
148 |
if f"{benchmark}_{model}" in dataframe.columns
|
149 |
]
|
150 |
+
if benchmark_cols: # Only add if we have valid columns
|
151 |
+
benchmark_groups.append(benchmark_cols)
|
152 |
+
print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
|
|
|
|
|
153 |
|
154 |
+
# Create model groups as well
|
155 |
+
model_groups = []
|
156 |
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
157 |
+
|
158 |
+
# For each unique model...
|
159 |
for model in all_models:
|
160 |
+
# Get all valid columns for this model across benchmarks
|
161 |
model_cols = [
|
162 |
f"{task.value.benchmark}_{model}"
|
163 |
for task in TasksMib_Subgraph
|
164 |
if model in task.value.models
|
165 |
and f"{task.value.benchmark}_{model}" in dataframe.columns
|
166 |
]
|
167 |
+
if model_cols: # Only add if we have valid columns
|
168 |
+
model_groups.append(model_cols)
|
169 |
+
print(f"\nModel group for {model}:", model_cols)
|
|
|
|
|
170 |
|
171 |
+
# Combine all groups
|
172 |
+
all_groups = benchmark_groups + model_groups
|
173 |
+
|
174 |
+
# Flatten groups for default selection (show everything initially)
|
175 |
+
all_columns = [col for group in all_groups for col in group]
|
176 |
+
print("\nAll available columns:", all_columns)
|
177 |
|
178 |
return Leaderboard(
|
179 |
value=dataframe,
|
180 |
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
181 |
select_columns=SelectColumns(
|
182 |
+
default_selection=all_columns, # Show all columns initially
|
183 |
+
label="Select Results:"
|
184 |
),
|
185 |
search_columns=["Method"],
|
186 |
hide_columns=[],
|
187 |
interactive=False,
|
188 |
)
|
189 |
|
190 |
+
# def init_leaderboard_mib_subgraph(dataframe, track):
|
191 |
+
# """Initialize the subgraph leaderboard with group-based column selection."""
|
192 |
+
# if dataframe is None or dataframe.empty:
|
193 |
+
# raise ValueError("Leaderboard DataFrame is empty or None.")
|
194 |
+
|
195 |
+
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
|
196 |
+
|
197 |
+
# # Create selection mapping for benchmark groups
|
198 |
+
# selection_mapping = {}
|
199 |
+
|
200 |
+
# # Create benchmark groups with descriptive names
|
201 |
+
# for task in TasksMib_Subgraph:
|
202 |
+
# benchmark = task.value.benchmark
|
203 |
+
# # Get all columns for this benchmark's models
|
204 |
+
# benchmark_cols = [
|
205 |
+
# f"{benchmark}_{model}"
|
206 |
+
# for model in task.value.models
|
207 |
+
# if f"{benchmark}_{model}" in dataframe.columns
|
208 |
+
# ]
|
209 |
+
# if benchmark_cols:
|
210 |
+
# # Use a descriptive group name as the key
|
211 |
+
# group_name = f"Benchmark: {benchmark.upper()}"
|
212 |
+
# selection_mapping[group_name] = benchmark_cols
|
213 |
+
# print(f"\n{group_name} maps to:", benchmark_cols)
|
214 |
+
|
215 |
+
# # Create model groups with descriptive names
|
216 |
+
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
|
217 |
+
# for model in all_models:
|
218 |
+
# # Get all columns for this model across benchmarks
|
219 |
+
# model_cols = [
|
220 |
+
# f"{task.value.benchmark}_{model}"
|
221 |
+
# for task in TasksMib_Subgraph
|
222 |
+
# if model in task.value.models
|
223 |
+
# and f"{task.value.benchmark}_{model}" in dataframe.columns
|
224 |
+
# ]
|
225 |
+
# if model_cols:
|
226 |
+
# # Use a descriptive group name as the key
|
227 |
+
# group_name = f"Model: {model}"
|
228 |
+
# selection_mapping[group_name] = model_cols
|
229 |
+
# print(f"\n{group_name} maps to:", model_cols)
|
230 |
+
|
231 |
+
# # The selection options are the group names
|
232 |
+
# selection_options = list(selection_mapping.keys())
|
233 |
+
# print("\nSelection options:", selection_options)
|
234 |
+
|
235 |
+
# return Leaderboard(
|
236 |
+
# value=dataframe,
|
237 |
+
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
|
238 |
+
# select_columns=SelectColumns(
|
239 |
+
# default_selection=selection_options, # Show all groups by default
|
240 |
+
# label="Select Benchmark or Model Groups:"
|
241 |
+
# ),
|
242 |
+
# search_columns=["Method"],
|
243 |
+
# hide_columns=[],
|
244 |
+
# interactive=False,
|
245 |
+
# )
|
246 |
+
|
247 |
|
248 |
|
249 |
|