Michele De Stefano
(checkpoint) Obtaining answers.
bc0013e
import dotenv
import importlib.resources
import json
import os
from typing import Any
import gradio as gr
import requests
import pandas as pd
from pathlib import Path
from langchain_core.messages import HumanMessage
from langgraph.graph import MessagesState
from langgraph.graph.graph import CompiledGraph
from agent_factory import AgentFactory
dotenv.load_dotenv()
HF_ACCESS_TOKEN = os.getenv("HF_ACCESS_TOKEN")
HF_USERNAME = os.getenv("HF_USERNAME")
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
DATA_PATH = Path(str(importlib.resources.files("data")))
QUESTIONS_FILE_PATH = DATA_PATH / "questions.jsonl"
AGENT_ANSWERS_FILE_PATH = DATA_PATH / "agent-answers.jsonl"
# --- Basic Agent Definition ---
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
__agent_factory: AgentFactory
__agent: CompiledGraph
def __init__(self):
self.__agent_factory = AgentFactory()
self.__agent = self.__agent_factory.get()
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
initial_state = MessagesState(
messages=[
self.__agent_factory.system_prompt,
HumanMessage(content=question)
]
)
final_state = self.__agent.invoke(input=initial_state)
answer = final_state["messages"][-1].content
print(f"Agent returning answer: {answer}")
return answer
def retrieve_downloaded_questions() -> list[dict[str, Any]]:
with open(QUESTIONS_FILE_PATH, mode="r") as f:
return [json.loads(line) for line in f]
def download_questions_and_files() -> list[dict[str, Any]]:
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
files_base_url = f"{api_url}/files"
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return [{
"error": "Fetched questions list is empty or invalid format."
}]
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return [{
"error": f"Error fetching questions: {e}"
}]
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return [{
"error": f"Error decoding server response for questions: {e}"
}]
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return [{
"error": f"An unexpected error occurred fetching questions: {e}"
}]
# Save input questions and related files into the data subdirectory
try:
with open(QUESTIONS_FILE_PATH, mode="w") as f:
for cur_question in questions_data:
json.dump(cur_question, f)
f.write("\n")
file_name = cur_question["file_name"]
if len(file_name) > 0:
file_url = f"{files_base_url}/{cur_question["task_id"]}"
response = requests.get(file_url)
out_file_path = DATA_PATH / file_name
with open(out_file_path, 'wb') as file:
file.write(response.content)
except requests.exceptions.RequestException as e:
print(f"Error fetching question-related file: {e}")
return [{
"error": f"Error fetching question-related file: {e}"
}]
except Exception as e:
print(f"An unexpected error occurred fetching question-related file: {e}")
return [{
"error": f"An unexpected error occurred fetching question-related file: {e}"
}]
return questions_data
def create_answers_file_if_not_exists() -> None:
if not os.path.exists(AGENT_ANSWERS_FILE_PATH):
with open(AGENT_ANSWERS_FILE_PATH, 'w'):
pass
def get_answers_payload() -> list[dict[str, Any]]:
with open(AGENT_ANSWERS_FILE_PATH, mode="r") as f:
answers_payload = [json.loads(line) for line in f]
return answers_payload
def get_task_ids_to_process() -> list[str]:
with open(QUESTIONS_FILE_PATH, mode="r") as f:
all_tasks = set([json.loads(line)["task_id"] for line in f])
answers = get_answers_payload()
answered_tasks = set([answer["task_id"] for answer in answers])
tasks_to_answer = all_tasks - answered_tasks
return list(tasks_to_answer)
def run_and_submit_all() -> tuple[str, pd.DataFrame | None]:
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
username= f"{HF_USERNAME}"
print(f"User: {username}")
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points
# towards your codebase ( useful for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions and related files (they get saved into the data directory)
if os.path.exists(QUESTIONS_FILE_PATH):
questions_data = retrieve_downloaded_questions()
else:
questions_data = download_questions_and_files()
# 3. Run your Agent and save agent's answers for later review
create_answers_file_if_not_exists()
task_ids_to_process = get_task_ids_to_process()
results_log = []
print(f"Running agent on {len(questions_data)} questions...")
with open(AGENT_ANSWERS_FILE_PATH, mode="a") as f:
for item in questions_data:
task_id = item.get("task_id")
if task_id not in task_ids_to_process:
print(f"Skipping already answered question: {item}")
continue
question_text = json.dumps(item)
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
answer_to_submit = agent(question_text)
answer_payload = {"task_id": task_id, "submitted_answer": answer_to_submit}
json.dump(answer_payload, f)
f.write("\n")
f.flush()
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer_to_submit})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
answers_payload = get_answers_payload()
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
if len(answers_payload) < len(questions_data):
msg = "Still need to process all the questions. Rerun until all questions are answered."
print(msg)
return msg, pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
headers = {
"Authorization": f"Bearer {HF_ACCESS_TOKEN}",
"Content-Type": "application/json"
}
try:
response = requests.post(
submit_url,
json=submission_data,
headers=headers,
timeout=60
)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Read the `README.md` file for configuration.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
"""
)
# gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)