|
import importlib.resources |
|
import json |
|
|
|
import torch |
|
|
|
from pathlib import Path |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
|
|
from question_retriever import get_question |
|
from tools.data_helpers import get_file_path |
|
|
|
__resources_path = Path(str(importlib.resources.files("data"))) |
|
|
|
|
|
def test_whisper() -> None: |
|
|
|
task_id = "1f975693-876d-457b-a649-393859e79bf3" |
|
question = json.loads(get_question(task_id=task_id)) |
|
|
|
audio_file = get_file_path(file_name=question["file_name"]) |
|
|
|
|
|
cuda_available = False |
|
device = "cuda:0" if cuda_available else "cpu" |
|
torch_dtype = torch.float16 if cuda_available else torch.float32 |
|
|
|
model_id = "openai/whisper-large-v3-turbo" |
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
) |
|
model.to(device) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
|
|
sample = audio_file |
|
|
|
generate_kwargs = { |
|
"return_timestamps": True, |
|
} |
|
|
|
result = pipe(sample, generate_kwargs=generate_kwargs) |
|
|
|
print(result["text"]) |
|
|