Spaces:
Sleeping
Sleeping
File size: 10,707 Bytes
7ffe939 c15eee2 7ffe939 5e63573 7c3776d 5e63573 7c3776d 5e63573 7c3776d 5e63573 7c3776d 5e63573 c15eee2 5e63573 7c3776d c15eee2 7c3776d 5e63573 c15eee2 7c3776d c15eee2 5e63573 7c3776d c15eee2 7c3776d 5e63573 c15eee2 5e63573 7c3776d c15eee2 7c3776d 5e63573 c15eee2 5e63573 7c3776d 5e63573 7c3776d 5e63573 c15eee2 5e63573 7c3776d 5e63573 c15eee2 7c3776d c15eee2 7c3776d c15eee2 5e63573 c15eee2 5e63573 7c3776d 5e63573 7c3776d 5e63573 7c3776d 5e63573 7c3776d 5e63573 7c3776d 5e63573 7c3776d 5e63573 7c3776d 5e63573 7c3776d c15eee2 5e63573 c15eee2 5e63573 7c3776d 5e63573 7c3776d 5e63573 7c3776d 5e63573 7c3776d 5e63573 7c3776d 5e63573 c15eee2 5e63573 c15eee2 5e63573 7c3776d 5e63573 7c3776d 5e63573 7c3776d 5e63573 c15eee2 5e63573 7c3776d 5e63573 c15eee2 7ffe939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import gradio as gr
import plotly.graph_objects as go
import pandas as pd
def create_sota_plot(df, metric='accuracy'):
"""
Create a plot showing model performance evolution over time for a selected metric.
Parameters:
df: DataFrame with columns ['model_name', 'release_date', and metric columns]
metric: The metric column to visualize
"""
# Sort by release date to ensure chronological order
df_sorted = df.sort_values('release_date').copy()
# Calculate cumulative best (SOTA) for the selected metric
df_sorted['cumulative_best'] = df_sorted[metric].cummax()
# Identify which models are SOTA (where metric equals cumulative best)
df_sorted['is_sota'] = df_sorted[metric] == df_sorted['cumulative_best']
# Get SOTA models for the line
sota_df = df_sorted[df_sorted['is_sota']].copy()
# Create the plot
fig = go.Figure()
# Add all models as scatter points (gray for non-SOTA, cyan for SOTA)
fig.add_trace(go.Scatter(
x=df_sorted['release_date'],
y=df_sorted[metric],
mode='markers',
name='All models',
marker=dict(
color=['#00CED1' if is_sota else 'lightgray'
for is_sota in df_sorted['is_sota']],
size=8,
opacity=0.7
),
text=df_sorted['model_name'],
hovertemplate=f'<b>%{{text}}</b><br>Date: %{{x}}<br>{metric.capitalize()}: %{{y:.2f}}<extra></extra>'
))
# Add SOTA line (cumulative best)
fig.add_trace(go.Scatter(
x=df_sorted['release_date'],
y=df_sorted['cumulative_best'],
mode='lines',
name='State-of-the-art (cumulative best)',
line=dict(color='#00CED1', width=2, dash='solid'),
hovertemplate=f'SOTA {metric.capitalize()}: %{{y:.2f}}<br>Date: %{{x}}<extra></extra>'
))
# Add labels for SOTA models (models that improved the best score)
for _, row in sota_df.iterrows():
fig.add_annotation(
x=row['release_date'],
y=row[metric],
text=row['model_name'],
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=1,
arrowcolor='gray',
ax=0,
ay=-30,
font=dict(size=10)
)
# Update layout
fig.update_layout(
title=f'Evolution of Model Performance Over Time - {metric.upper()}',
xaxis_title='Release Date',
yaxis_title=f'{metric.capitalize()} Score',
xaxis=dict(
showgrid=True,
gridcolor='lightgray'
),
yaxis=dict(
showgrid=True,
gridcolor='lightgray'
),
plot_bgcolor='white',
paper_bgcolor='white',
height=600,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
),
hovermode='closest'
)
return fig
def create_sample_dataframe():
"""
Create a sample DataFrame with multiple metrics for model performance.
"""
# Create sample data with multiple metrics
data = {
'model_name': [
'SIFT + FVs', 'AlexNet', 'VGG-16', 'GoogLeNet', 'ResNet-50',
'SPPNet', 'Inception V2', 'Inception V3', 'ResNet-152', 'DenseNet',
'MobileNet', 'NASNET-A(6)', 'EfficientNet', 'Vision Transformer',
'CoAtNet-7', 'CLIP', 'DALL-E', 'GPT-Vision', 'Model-X', 'Model-Y',
# Add some models that don't improve SOTA
'SmallNet-1', 'SmallNet-2', 'BasicCNN', 'SimpleDNN', 'QuickNet',
'FastNet', 'LiteModel', 'CompactNet', 'MiniVGG', 'TinyResNet'
],
'release_date': pd.to_datetime([
'2012-01-15', '2012-09-30', '2014-04-10', '2014-09-17', '2015-12-10',
'2014-06-18', '2015-02-11', '2015-12-02', '2016-05-11', '2016-08-25',
'2017-04-17', '2017-11-04', '2019-05-28', '2020-10-22',
'2021-06-09', '2021-01-05', '2021-01-05', '2022-03-14', '2022-07-20', '2022-11-15',
# Dates for non-SOTA models
'2013-03-10', '2013-07-22', '2014-01-15', '2015-03-20', '2016-02-14',
'2017-06-30', '2018-09-12', '2019-02-28', '2020-04-15', '2021-08-30'
]),
'accuracy': [
53.0, 65.0, 71.5, 74.8, 76.0,
74.0, 78.0, 81.0, 77.8, 79.2,
70.6, 82.7, 84.3, 85.2,
90.88, 86.5, 87.0, 87.79, 87.73, 88.1,
# Scores for non-SOTA models
58.0, 62.0, 68.0, 72.0, 73.5,
75.0, 78.5, 80.0, 82.0, 84.0
],
'top5_accuracy': [
71.0, 82.0, 89.5, 91.2, 92.5,
91.0, 93.5, 95.0, 94.0, 94.5,
89.5, 96.2, 97.1, 97.5,
98.5, 97.8, 98.0, 98.2, 98.1, 98.3,
# Top-5 scores for non-SOTA models
75.0, 80.0, 85.0, 88.0, 90.0,
91.5, 93.0, 95.5, 96.0, 96.5
],
'parameters_millions': [
0.5, 62, 138, 6.8, 25.6,
21.0, 11.2, 23.8, 60.3, 7.9,
4.2, 88.9, 66.0, 86.0,
2185.0, 428.0, 1200.0, 1750.0, 890.0, 920.0,
# Parameters for non-SOTA models
2.5, 3.8, 15.0, 8.5, 5.2,
12.0, 3.5, 6.7, 9.0, 11.5
],
'flops_billions': [
0.1, 1.5, 15.5, 1.5, 3.8,
2.5, 2.0, 5.7, 11.3, 2.8,
0.57, 23.8, 9.9, 16.9,
420.0, 85.0, 250.0, 380.0, 180.0, 195.0,
# FLOPs for non-SOTA models
0.3, 0.5, 2.0, 1.2, 0.8,
1.8, 0.4, 1.0, 1.5, 2.2
],
'inference_time_ms': [
85, 23, 45, 28, 35,
32, 26, 30, 48, 38,
18, 65, 42, 55,
120, 75, 95, 110, 88, 92,
# Inference time for non-SOTA models
15, 20, 30, 25, 22,
28, 12, 18, 24, 35
]
}
return pd.DataFrame(data)
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# State-of-the-Art Models Timeline with Multiple Metrics")
gr.Markdown("""
This visualization shows the evolution of model performance over time across different metrics.
Use the dropdown to switch between metrics. The line represents the cumulative best (SOTA) score achieved up to each point in time.
""")
# Create the main DataFrame inline
df_main = create_sample_dataframe()
# Get available metrics (exclude non-metric columns)
metric_columns = [col for col in df_main.columns if col not in ['model_name', 'release_date']]
# Create layout with dropdown in upper right
with gr.Row():
with gr.Column(scale=3):
# Display data info
gr.Markdown(f"**Total models in dataset:** {len(df_main)}")
gr.Markdown(
f"**Date range:** {df_main['release_date'].min().date()} to {df_main['release_date'].max().date()}")
with gr.Column(scale=1):
metric_dropdown = gr.Dropdown(
choices=metric_columns,
value='accuracy',
label="Select Metric",
interactive=True
)
plot = gr.Plot(label="Model Performance Evolution")
# Function to update plot and statistics
def update_plot_and_stats(selected_metric):
fig = create_sota_plot(df_main, selected_metric)
best_value = df_main[selected_metric].max()
best_model = df_main.loc[df_main[selected_metric].idxmax(), 'model_name']
# Format statistics based on metric type
if selected_metric == 'parameters_millions':
stats_text = f"**Best {selected_metric.replace('_', ' ').title()}:** {best_value:.1f}M ({best_model})"
elif selected_metric == 'flops_billions':
stats_text = f"**Best {selected_metric.replace('_', ' ').title()}:** {best_value:.1f}B ({best_model})"
elif selected_metric == 'inference_time_ms':
stats_text = f"**Best {selected_metric.replace('_', ' ').title()}:** {best_value:.1f}ms ({best_model})"
else:
stats_text = f"**Best {selected_metric.replace('_', ' ').title()}:** {best_value:.2f}% ({best_model})"
return fig, stats_text
# Display best score for selected metric
metric_stats = gr.Markdown()
# Create plot on load
demo.load(
fn=lambda: update_plot_and_stats('accuracy'),
outputs=[plot, metric_stats]
)
# Update plot when metric changes
metric_dropdown.change(
fn=update_plot_and_stats,
inputs=metric_dropdown,
outputs=[plot, metric_stats]
)
# Add interactive controls
with gr.Row():
show_data_btn = gr.Button("Show/Hide DataFrame")
export_stats_btn = gr.Button("Export Statistics")
# DataFrame display (initially hidden)
df_display = gr.Dataframe(
value=df_main,
label="Model Performance Data",
visible=False
)
def toggle_dataframe():
return gr.Dataframe(value=df_main, visible=True)
def export_statistics():
stats = []
for metric in metric_columns:
best_value = df_main[metric].max()
best_model = df_main.loc[df_main[metric].idxmax(), 'model_name']
avg_value = df_main[metric].mean()
stats.append({
'Metric': metric.replace('_', ' ').title(),
'Best Value': f"{best_value:.2f}",
'Best Model': best_model,
'Average': f"{avg_value:.2f}"
})
stats_df = pd.DataFrame(stats)
return gr.Dataframe(value=stats_df, visible=True)
stats_display = gr.Dataframe(
label="Statistics Summary",
visible=False
)
show_data_btn.click(
fn=toggle_dataframe,
outputs=df_display
)
export_stats_btn.click(
fn=export_statistics,
outputs=stats_display
)
gr.Markdown("""
### About this visualization:
- **Metric Selector**: Use the dropdown in the upper right to switch between different performance metrics
- **Cyan line**: Cumulative best (SOTA) score over time for the selected metric
- **Cyan dots**: Models that achieved a new SOTA when released
- **Gray dots**: Other models that didn't beat the existing SOTA
- **Hover over points**: See model names, release dates, and metric values
### Available Metrics:
- **Accuracy**: Top-1 accuracy on ImageNet (%)
- **Top5 Accuracy**: Top-5 accuracy on ImageNet (%)
- **Parameters (Millions)**: Model size in millions of parameters
- **FLOPs (Billions)**: Computational cost in billions of operations
- **Inference Time (ms)**: Time to process a single image
""")
demo.launch() |