Spaces:
Sleeping
Sleeping
File size: 55,698 Bytes
e35f53d 77bf716 e35f53d 77bf716 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 77bf716 e35f53d 415ccf1 77bf716 e35f53d 415ccf1 682de52 415ccf1 e35f53d 415ccf1 682de52 e35f53d 682de52 e35f53d 415ccf1 682de52 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 682de52 e35f53d 77bf716 415ccf1 77bf716 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 77bf716 415ccf1 77bf716 415ccf1 e35f53d 415ccf1 682de52 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 682de52 e35f53d 415ccf1 e35f53d 682de52 e35f53d 682de52 e35f53d 77bf716 415ccf1 682de52 e35f53d 682de52 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 682de52 415ccf1 e35f53d 415ccf1 e35f53d 682de52 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 682de52 415ccf1 e35f53d 682de52 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 682de52 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 77bf716 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 415ccf1 e35f53d 77bf716 66de5aa 415ccf1 66de5aa 415ccf1 66de5aa e35f53d 415ccf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 |
import os
import uuid
import json
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
from werkzeug.utils import secure_filename
import threading
import time
import logging
from scipy import stats
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler, LabelEncoder, MinMaxScaler
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier, GradientBoostingRegressor
from sklearn.linear_model import LinearRegression, LogisticRegression, Ridge, Lasso
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.decomposition import PCA
from sklearn.metrics import mean_squared_error, r2_score, classification_report, confusion_matrix
from sklearn.feature_selection import SelectKBest, f_regression, mutual_info_regression
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
import plotly.express as px
from plotly.utils import PlotlyJSONEncoder
import io
import base64
from apscheduler.schedulers.background import BackgroundScheduler
import atexit
import warnings
warnings.filterwarnings('ignore')
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
CORS(app)
# Configuration
UPLOAD_FOLDER = '/tmp/uploads'
PROCESSED_FOLDER = '/tmp/processed'
MODELS_FOLDER = '/tmp/models'
MAX_FILE_SIZE = 1024 * 1024 * 1024 # 1GB for enterprise
ALLOWED_EXTENSIONS = {'csv', 'xlsx', 'xls', 'json', 'parquet', 'tsv', 'feather'}
FILE_EXPIRY_HOURS = 24 # Extended for enterprise use
# Ensure directories exist
for folder in [UPLOAD_FOLDER, PROCESSED_FOLDER, MODELS_FOLDER]:
os.makedirs(folder, exist_ok=True)
# Enhanced file storage with metadata
file_storage = {}
model_storage = {}
analysis_history = {}
class EnterpriseAnalytics:
"""Enterprise-grade analytics engine"""
def __init__(self):
self.scaler = StandardScaler()
self.models = {}
def advanced_data_profiling(self, df):
"""Comprehensive data profiling like enterprise tools"""
profile = {
'dataset_overview': {
'rows': len(df),
'columns': len(df.columns),
'memory_usage': df.memory_usage(deep=True).sum(),
'duplicate_rows': df.duplicated().sum()
},
'column_analysis': {},
'data_quality': {},
'relationships': {},
'recommendations': []
}
for col in df.columns:
col_data = df[col]
col_profile = {
'dtype': str(col_data.dtype),
'missing_count': col_data.isnull().sum(),
'missing_percentage': (col_data.isnull().sum() / len(df)) * 100,
'unique_values': col_data.nunique(),
'cardinality': col_data.nunique() / len(df) if len(df) > 0 else 0
}
if pd.api.types.is_numeric_dtype(col_data):
col_profile.update({
'statistics': {
'mean': col_data.mean(),
'median': col_data.median(),
'std': col_data.std(),
'min': col_data.min(),
'max': col_data.max(),
'q25': col_data.quantile(0.25),
'q75': col_data.quantile(0.75),
'skewness': stats.skew(col_data.dropna()),
'kurtosis': stats.kurtosis(col_data.dropna())
},
'distribution': 'normal' if abs(stats.skew(col_data.dropna())) < 0.5 else 'skewed'
})
else:
col_profile.update({
'top_categories': col_data.value_counts().head(10).to_dict(),
'category_distribution': 'uniform' if col_data.value_counts().std() < col_data.value_counts().mean() * 0.5 else 'imbalanced'
})
profile['column_analysis'][col] = col_profile
# Data quality assessment
profile['data_quality'] = {
'completeness_score': (1 - df.isnull().sum().sum() / (len(df) * len(df.columns))) * 100,
'uniqueness_score': (df.nunique().sum() / (len(df) * len(df.columns))) * 100,
'consistency_score': self._calculate_consistency_score(df)
}
# Generate recommendations
profile['recommendations'] = self._generate_recommendations(df, profile)
return profile
def _calculate_consistency_score(self, df):
"""Calculate data consistency score"""
score = 100
for col in df.select_dtypes(include=['object']):
# Check for inconsistent formatting
values = df[col].dropna().astype(str)
if len(values) > 0:
# Check for mixed case
if len(set([v.lower() for v in values])) != len(set(values)):
score -= 5
# Check for leading/trailing spaces
if any(v != v.strip() for v in values):
score -= 5
return max(0, score)
def _generate_recommendations(self, df, profile):
"""Generate actionable recommendations"""
recommendations = []
# High missing value columns
for col, analysis in profile['column_analysis'].items():
if analysis['missing_percentage'] > 20:
recommendations.append({
'type': 'data_quality',
'priority': 'high',
'message': f"Column '{col}' has {analysis['missing_percentage']:.1f}% missing values. Consider imputation or removal.",
'action': 'handle_missing_values'
})
# High cardinality categorical columns
for col, analysis in profile['column_analysis'].items():
if analysis.get('cardinality', 0) > 0.8 and df[col].dtype == 'object':
recommendations.append({
'type': 'feature_engineering',
'priority': 'medium',
'message': f"Column '{col}' has high cardinality. Consider feature encoding or dimensionality reduction.",
'action': 'encode_categorical'
})
# Skewed distributions
for col, analysis in profile['column_analysis'].items():
if 'statistics' in analysis and abs(analysis['statistics']['skewness']) > 2:
recommendations.append({
'type': 'data_transformation',
'priority': 'medium',
'message': f"Column '{col}' is highly skewed. Consider log transformation or scaling.",
'action': 'transform_distribution'
})
return recommendations
def advanced_feature_engineering(self, df, target_column=None):
"""Enterprise-level feature engineering"""
engineered_features = {}
# Numeric feature engineering
numeric_cols = df.select_dtypes(include=[np.number]).columns
for col in numeric_cols:
if col != target_column:
# Polynomial features
engineered_features[f'{col}_squared'] = df[col] ** 2
engineered_features[f'{col}_log'] = np.log1p(df[col].abs())
# Binning
engineered_features[f'{col}_binned'] = pd.cut(df[col], bins=5, labels=False)
# Rolling statistics (if data has time component)
if len(df) > 10:
engineered_features[f'{col}_rolling_mean'] = df[col].rolling(window=min(5, len(df)//2)).mean()
# Categorical feature engineering
categorical_cols = df.select_dtypes(include=['object']).columns
for col in categorical_cols:
if col != target_column:
# Frequency encoding
freq_map = df[col].value_counts().to_dict()
engineered_features[f'{col}_frequency'] = df[col].map(freq_map)
# Target encoding (if target is provided)
if target_column and target_column in df.columns:
target_mean = df.groupby(col)[target_column].mean()
engineered_features[f'{col}_target_encoded'] = df[col].map(target_mean)
# Interaction features
if len(numeric_cols) >= 2:
col_pairs = [(numeric_cols[i], numeric_cols[j])
for i in range(len(numeric_cols))
for j in range(i+1, min(i+3, len(numeric_cols)))] # Limit combinations
for col1, col2 in col_pairs:
if col1 != target_column and col2 != target_column:
engineered_features[f'{col1}_{col2}_interaction'] = df[col1] * df[col2]
engineered_features[f'{col1}_{col2}_ratio'] = df[col1] / (df[col2] + 1e-8)
return pd.DataFrame(engineered_features, index=df.index)
def automated_ml_pipeline(self, df, target_column, problem_type='auto'):
"""Enterprise AutoML pipeline"""
results = {
'preprocessing': {},
'feature_selection': {},
'models': {},
'best_model': {},
'predictions': {},
'feature_importance': {}
}
# Determine problem type
if problem_type == 'auto':
if df[target_column].dtype in ['object', 'category'] or df[target_column].nunique() < 10:
problem_type = 'classification'
else:
problem_type = 'regression'
# Preprocessing
feature_cols = [col for col in df.columns if col != target_column]
X = df[feature_cols].copy()
y = df[target_column].copy()
# Handle missing values
X_numeric = X.select_dtypes(include=[np.number])
X_categorical = X.select_dtypes(include=['object'])
if not X_numeric.empty:
X_numeric = X_numeric.fillna(X_numeric.median())
if not X_categorical.empty:
X_categorical = X_categorical.fillna(X_categorical.mode().iloc[0] if not X_categorical.mode().empty else 'Unknown')
# Encode categorical variables
if not X_categorical.empty:
le = LabelEncoder()
for col in X_categorical.columns:
X_categorical[col] = le.fit_transform(X_categorical[col].astype(str))
X_processed = pd.concat([X_numeric, X_categorical], axis=1)
# Handle target variable for classification
if problem_type == 'classification' and y.dtype == 'object':
le_target = LabelEncoder()
y = le_target.fit_transform(y)
# Feature selection
if len(X_processed.columns) > 10:
selector = SelectKBest(f_regression, k=min(10, len(X_processed.columns)))
X_selected = selector.fit_transform(X_processed, y)
selected_features = X_processed.columns[selector.get_support()].tolist()
X_processed = pd.DataFrame(X_selected, columns=selected_features)
results['feature_selection']['selected_features'] = selected_features
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X_processed, y, test_size=0.2, random_state=42
)
# Scale features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Model selection based on problem type
if problem_type == 'regression':
models = {
'Linear Regression': LinearRegression(),
'Random Forest': RandomForestRegressor(n_estimators=100, random_state=42),
'Gradient Boosting': GradientBoostingRegressor(n_estimators=100, random_state=42),
'Ridge Regression': Ridge()
}
else:
models = {
'Logistic Regression': LogisticRegression(random_state=42),
'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
'Gradient Boosting': GradientBoostingRegressor(n_estimators=100, random_state=42)
}
# Train and evaluate models
best_score = -np.inf if problem_type == 'regression' else 0
best_model_name = None
for name, model in models.items():
try:
# Cross-validation
if problem_type == 'regression':
scores = cross_val_score(model, X_train_scaled, y_train, cv=5, scoring='r2')
score = scores.mean()
else:
scores = cross_val_score(model, X_train_scaled, y_train, cv=5, scoring='accuracy')
score = scores.mean()
# Train final model
model.fit(X_train_scaled, y_train)
y_pred = model.predict(X_test_scaled)
if problem_type == 'regression':
test_score = r2_score(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
results['models'][name] = {
'cv_score': score,
'test_r2': test_score,
'test_mse': mse,
'predictions': y_pred.tolist()
}
else:
test_score = model.score(X_test_scaled, y_test)
results['models'][name] = {
'cv_score': score,
'test_accuracy': test_score,
'predictions': y_pred.tolist()
}
# Track best model
if score > best_score:
best_score = score
best_model_name = name
# Feature importance
if hasattr(model, 'feature_importances_'):
importance = dict(zip(X_processed.columns, model.feature_importances_))
results['feature_importance'] = dict(sorted(importance.items(), key=lambda x: x[1], reverse=True))
except Exception as e:
logger.error(f"Error training {name}: {str(e)}")
continue
results['best_model'] = {
'name': best_model_name,
'score': best_score,
'problem_type': problem_type
}
results['preprocessing'] = {
'numeric_features': X_numeric.columns.tolist() if not X_numeric.empty else [],
'categorical_features': X_categorical.columns.tolist() if not X_categorical.empty else [],
'scaling_applied': True,
'missing_values_handled': True
}
return results
def advanced_clustering_analysis(self, df, n_clusters=None):
"""Enterprise clustering with multiple algorithms"""
# Prepare data
numeric_df = df.select_dtypes(include=[np.number])
if numeric_df.empty:
raise ValueError("No numeric columns for clustering")
# Handle missing values
numeric_df = numeric_df.fillna(numeric_df.median())
# Scale data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(numeric_df)
results = {
'algorithms': {},
'optimal_clusters': {},
'silhouette_scores': {},
'recommendations': []
}
# Determine optimal number of clusters if not provided
if n_clusters is None:
# Elbow method for K-means
inertias = []
k_range = range(2, min(11, len(numeric_df) // 2))
for k in k_range:
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
kmeans.fit(X_scaled)
inertias.append(kmeans.inertia_)
# Find elbow point (simplified)
if len(inertias) > 2:
diffs = np.diff(inertias)
second_diffs = np.diff(diffs)
n_clusters = k_range[np.argmax(second_diffs) + 1] if len(second_diffs) > 0 else 3
else:
n_clusters = 3
# Apply multiple clustering algorithms
algorithms = {
'K-Means': KMeans(n_clusters=n_clusters, random_state=42, n_init=10),
'Hierarchical': AgglomerativeClustering(n_clusters=n_clusters),
'DBSCAN': DBSCAN(eps=0.5, min_samples=5)
}
for name, algo in algorithms.items():
try:
if name == 'DBSCAN':
labels = algo.fit_predict(X_scaled)
n_clusters_found = len(set(labels)) - (1 if -1 in labels else 0)
else:
labels = algo.fit_predict(X_scaled)
n_clusters_found = n_clusters
# Calculate silhouette score
if len(set(labels)) > 1:
from sklearn.metrics import silhouette_score
sil_score = silhouette_score(X_scaled, labels)
else:
sil_score = 0
results['algorithms'][name] = {
'labels': labels.tolist(),
'n_clusters': n_clusters_found,
'silhouette_score': sil_score
}
results['silhouette_scores'][name] = sil_score
except Exception as e:
logger.error(f"Error in {name} clustering: {str(e)}")
continue
# PCA for visualization
if len(numeric_df.columns) > 2:
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
results['pca_components'] = X_pca.tolist()
results['pca_explained_variance'] = pca.explained_variance_ratio_.tolist()
# Generate recommendations
best_algo = max(results['silhouette_scores'].items(), key=lambda x: x[1])[0]
results['recommendations'].append({
'type': 'clustering',
'message': f"Best clustering algorithm: {best_algo} with silhouette score: {results['silhouette_scores'][best_algo]:.3f}",
'optimal_clusters': results['algorithms'][best_algo]['n_clusters']
})
return results
def time_series_analysis(self, df, date_column, value_column):
"""Advanced time series analysis"""
# Convert date column
df[date_column] = pd.to_datetime(df[date_column])
df = df.sort_values(date_column)
# Set date as index
ts_df = df.set_index(date_column)[value_column]
results = {
'trend_analysis': {},
'seasonality': {},
'forecasting': {},
'anomalies': {},
'statistics': {}
}
# Basic statistics
results['statistics'] = {
'mean': ts_df.mean(),
'std': ts_df.std(),
'min': ts_df.min(),
'max': ts_df.max(),
'trend': 'increasing' if ts_df.iloc[-1] > ts_df.iloc[0] else 'decreasing'
}
# Trend analysis using linear regression
X = np.arange(len(ts_df)).reshape(-1, 1)
y = ts_df.values
lr = LinearRegression()
lr.fit(X, y)
trend_slope = lr.coef_[0]
results['trend_analysis'] = {
'slope': trend_slope,
'direction': 'increasing' if trend_slope > 0 else 'decreasing',
'strength': abs(trend_slope)
}
# Simple anomaly detection using IQR
Q1 = ts_df.quantile(0.25)
Q3 = ts_df.quantile(0.75)
IQR = Q3 - Q1
anomalies = ts_df[(ts_df < Q1 - 1.5 * IQR) | (ts_df > Q3 + 1.5 * IQR)]
results['anomalies'] = {
'count': len(anomalies),
'dates': anomalies.index.strftime('%Y-%m-%d').tolist(),
'values': anomalies.values.tolist()
}
# Simple forecasting (moving average)
window = min(7, len(ts_df) // 4)
if window > 0:
forecast_periods = min(10, len(ts_df) // 4)
last_values = ts_df.tail(window).mean()
results['forecasting'] = {
'method': 'moving_average',
'forecast_periods': forecast_periods,
'forecast_values': [last_values] * forecast_periods
}
return results
# Initialize analytics engine
analytics_engine = EnterpriseAnalytics()
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def cleanup_old_files():
"""Enhanced cleanup with model cleanup"""
try:
# Existing cleanup logic...
for folder in [UPLOAD_FOLDER, PROCESSED_FOLDER, MODELS_FOLDER]:
for root, dirs, files in os.walk(folder):
for file in files:
filepath = os.path.join(root, file)
if get_file_age(filepath) > FILE_EXPIRY_HOURS:
os.remove(filepath)
logger.info(f"Cleaned up old file: {filepath}")
# Clean up storage entries
current_time = datetime.now()
for storage in [file_storage, model_storage, analysis_history]:
sessions_to_remove = []
for session_id, session_data in storage.items():
if isinstance(session_data, dict):
items_to_remove = []
for item_id, item_info in session_data.items():
if 'timestamp' in item_info:
item_time = datetime.fromisoformat(item_info['timestamp'])
if (current_time - item_time).total_seconds() > FILE_EXPIRY_HOURS * 3600:
items_to_remove.append(item_id)
for item_id in items_to_remove:
del session_data[item_id]
if not session_data:
sessions_to_remove.append(session_id)
for session_id in sessions_to_remove:
del storage[session_id]
except Exception as e:
logger.error(f"Error during cleanup: {str(e)}")
def get_file_age(filepath):
"""Get file age in hours"""
if os.path.exists(filepath):
file_time = os.path.getmtime(filepath)
return (time.time() - file_time) / 3600
return float('inf')
def load_data_file(filepath, filename):
"""Enhanced data loading with more formats"""
try:
file_ext = filename.rsplit('.', 1)[1].lower()
if file_ext == 'csv':
return pd.read_csv(filepath)
elif file_ext in ['xlsx', 'xls']:
return pd.read_excel(filepath)
elif file_ext == 'json':
return pd.read_json(filepath)
elif file_ext == 'parquet':
return pd.read_parquet(filepath)
elif file_ext == 'tsv':
return pd.read_csv(filepath, sep='\t')
elif file_ext == 'feather':
return pd.read_feather(filepath)
else:
raise ValueError(f"Unsupported file format: {file_ext}")
except Exception as e:
raise Exception(f"Error loading file: {str(e)}")
# Setup enhanced scheduler
scheduler = BackgroundScheduler()
scheduler.add_job(func=cleanup_old_files, trigger="interval", hours=1)
scheduler.start()
atexit.register(lambda: scheduler.shutdown())
# API Endpoints
@app.route('/api/health', methods=['GET'])
def health_check():
return jsonify({
'status': 'healthy',
'version': '2.0.0-enterprise',
'features': ['advanced_profiling', 'automl', 'clustering', 'time_series'],
'timestamp': datetime.now().isoformat()
})
@app.route('/api/upload', methods=['POST'])
def upload_file():
try:
if 'file' not in request.files:
return jsonify({'error': 'No file provided'}), 400
file = request.files['file']
session_id = request.form.get('sessionId')
if not session_id:
return jsonify({'error': 'Session ID required'}), 400
if file.filename == '':
return jsonify({'error': 'No file selected'}), 400
if not allowed_file(file.filename):
return jsonify({'error': 'File type not supported'}), 400
# Check file size
file.seek(0, 2)
file_size = file.tell()
file.seek(0)
if file_size > MAX_FILE_SIZE:
return jsonify({'error': f'File too large. Maximum size is {MAX_FILE_SIZE // (1024*1024)}MB'}), 400
# Generate unique file ID and secure filename
file_id = str(uuid.uuid4())
filename = secure_filename(file.filename)
# Create session directory
session_dir = os.path.join(UPLOAD_FOLDER, session_id)
os.makedirs(session_dir, exist_ok=True)
# Save file
filepath = os.path.join(session_dir, f"{file_id}_{filename}")
file.save(filepath)
# Enhanced file metadata
if session_id not in file_storage:
file_storage[session_id] = {}
file_storage[session_id][file_id] = {
'filename': filename,
'filepath': filepath,
'size': file_size,
'timestamp': datetime.now().isoformat(),
'format': filename.rsplit('.', 1)[1].lower(),
'status': 'uploaded'
}
return jsonify({
'fileId': file_id,
'filename': filename,
'size': file_size,
'format': filename.rsplit('.', 1)[1].lower(),
'message': 'File uploaded successfully'
})
except Exception as e:
logger.error(f"Upload error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/profile/<file_id>', methods=['GET'])
def profile_data(file_id):
"""Advanced data profiling endpoint"""
try:
session_id = request.args.get('sessionId')
if not session_id or session_id not in file_storage:
return jsonify({'error': 'Invalid session'}), 400
if file_id not in file_storage[session_id]:
return jsonify({'error': 'File not found'}), 404
file_info = file_storage[session_id][file_id]
df = load_data_file(file_info['filepath'], file_info['filename'])
# Perform advanced profiling
profile = analytics_engine.advanced_data_profiling(df)
return jsonify(profile)
except Exception as e:
logger.error(f"Profiling error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/automl', methods=['POST'])
def run_automl():
"""Automated ML pipeline endpoint"""
try:
data = request.get_json()
session_id = data.get('sessionId')
file_id = data.get('fileId')
target_column = data.get('targetColumn')
problem_type = data.get('problemType', 'auto')
if not all([session_id, file_id, target_column]):
return jsonify({'error': 'Session ID, File ID, and target column required'}), 400
if session_id not in file_storage or file_id not in file_storage[session_id]:
return jsonify({'error': 'File not found'}), 404
file_info = file_storage[session_id][file_id]
df = load_data_file(file_info['filepath'], file_info['filename'])
if target_column not in df.columns:
return jsonify({'error': f'Target column {target_column} not found'}), 400
# Run AutoML pipeline
results = analytics_engine.automated_ml_pipeline(df, target_column, problem_type)
# Save results
result_id = str(uuid.uuid4())
result_dir = os.path.join(PROCESSED_FOLDER, session_id)
os.makedirs(result_dir, exist_ok=True)
result_filepath = os.path.join(result_dir, f"{result_id}_automl.json")
with open(result_filepath, 'w') as f:
json.dump(results, f, indent=2, default=str)
return jsonify({
'resultId': result_id,
'results': results,
'analysisType': 'automl',
'timestamp': datetime.now().isoformat()
})
except Exception as e:
logger.error(f"AutoML error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/clustering', methods=['POST'])
def run_clustering():
"""Advanced clustering analysis endpoint"""
try:
data = request.get_json()
session_id = data.get('sessionId')
file_id = data.get('fileId')
n_clusters = data.get('nClusters')
if not all([session_id, file_id]):
return jsonify({'error': 'Session ID and File ID required'}), 400
if session_id not in file_storage or file_id not in file_storage[session_id]:
return jsonify({'error': 'File not found'}), 404
file_info = file_storage[session_id][file_id]
df = load_data_file(file_info['filepath'], file_info['filename'])
# Run clustering analysis
results = analytics_engine.advanced_clustering_analysis(df, n_clusters)
# Save results
result_id = str(uuid.uuid4())
result_dir = os.path.join(PROCESSED_FOLDER, session_id)
os.makedirs(result_dir, exist_ok=True)
result_filepath = os.path.join(result_dir, f"{result_id}_clustering.json")
with open(result_filepath, 'w') as f:
json.dump(results, f, indent=2, default=str)
return jsonify({
'resultId': result_id,
'results': results,
'analysisType': 'clustering',
'timestamp': datetime.now().isoformat()
})
except Exception as e:
logger.error(f"Clustering error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/timeseries', methods=['POST'])
def run_timeseries():
"""Time series analysis endpoint"""
try:
data = request.get_json()
session_id = data.get('sessionId')
file_id = data.get('fileId')
date_column = data.get('dateColumn')
value_column = data.get('valueColumn')
if not all([session_id, file_id, date_column, value_column]):
return jsonify({'error': 'Session ID, File ID, date column, and value column required'}), 400
if session_id not in file_storage or file_id not in file_storage[session_id]:
return jsonify({'error': 'File not found'}), 404
file_info = file_storage[session_id][file_id]
df = load_data_file(file_info['filepath'], file_info['filename'])
if date_column not in df.columns or value_column not in df.columns:
return jsonify({'error': 'Date or value column not found'}), 400
# Run time series analysis
results = analytics_engine.time_series_analysis(df, date_column, value_column)
# Save results
result_id = str(uuid.uuid4())
result_dir = os.path.join(PROCESSED_FOLDER, session_id)
os.makedirs(result_dir, exist_ok=True)
result_filepath = os.path.join(result_dir, f"{result_id}_timeseries.json")
with open(result_filepath, 'w') as f:
json.dump(results, f, indent=2, default=str)
return jsonify({
'resultId': result_id,
'results': results,
'analysisType': 'timeseries',
'timestamp': datetime.now().isoformat()
})
except Exception as e:
logger.error(f"Time series error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/feature-engineering', methods=['POST'])
def run_feature_engineering():
"""Feature engineering endpoint"""
try:
data = request.get_json()
session_id = data.get('sessionId')
file_id = data.get('fileId')
target_column = data.get('targetColumn')
if not all([session_id, file_id]):
return jsonify({'error': 'Session ID and File ID required'}), 400
if session_id not in file_storage or file_id not in file_storage[session_id]:
return jsonify({'error': 'File not found'}), 404
file_info = file_storage[session_id][file_id]
df = load_data_file(file_info['filepath'], file_info['filename'])
# Generate engineered features
engineered_df = analytics_engine.advanced_feature_engineering(df, target_column)
# Save engineered dataset
engineered_file_id = str(uuid.uuid4())
engineered_filepath = os.path.join(
PROCESSED_FOLDER, session_id, f"{engineered_file_id}_engineered.csv"
)
os.makedirs(os.path.dirname(engineered_filepath), exist_ok=True)
# Combine original and engineered features
combined_df = pd.concat([df, engineered_df], axis=1)
combined_df.to_csv(engineered_filepath, index=False)
# Store engineered file info
if session_id not in file_storage:
file_storage[session_id] = {}
file_storage[session_id][engineered_file_id] = {
'filename': f"{file_info['filename'].split('.')[0]}_engineered.csv",
'filepath': engineered_filepath,
'size': os.path.getsize(engineered_filepath),
'timestamp': datetime.now().isoformat(),
'format': 'csv',
'status': 'engineered',
'parent_file': file_id
}
return jsonify({
'engineeredFileId': engineered_file_id,
'originalFeatures': len(df.columns),
'engineeredFeatures': len(engineered_df.columns),
'totalFeatures': len(combined_df.columns),
'featureNames': engineered_df.columns.tolist(),
'message': 'Feature engineering completed successfully'
})
except Exception as e:
logger.error(f"Feature engineering error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/advanced-visualization', methods=['POST'])
def create_advanced_visualization():
"""Advanced visualization endpoint with Plotly"""
try:
data = request.get_json()
session_id = data.get('sessionId')
file_id = data.get('fileId')
chart_type = data.get('chartType')
parameters = data.get('parameters', {})
if not all([session_id, file_id, chart_type]):
return jsonify({'error': 'Session ID, File ID, and chart type required'}), 400
if session_id not in file_storage or file_id not in file_storage[session_id]:
return jsonify({'error': 'File not found'}), 404
file_info = file_storage[session_id][file_id]
df = load_data_file(file_info['filepath'], file_info['filename'])
# Create advanced visualizations using Plotly
if chart_type == 'correlation_heatmap':
numeric_df = df.select_dtypes(include=[np.number])
corr_matrix = numeric_df.corr()
fig = px.imshow(corr_matrix,
title='Correlation Heatmap',
color_continuous_scale='RdBu_r',
aspect='auto')
elif chart_type == 'distribution_plots':
column = parameters.get('column')
if not column or column not in df.columns:
return jsonify({'error': 'Column not specified or not found'}), 400
fig = px.histogram(df, x=column,
title=f'Distribution of {column}',
marginal='box')
elif chart_type == 'scatter_matrix':
columns = parameters.get('columns', df.select_dtypes(include=[np.number]).columns[:4])
fig = px.scatter_matrix(df[columns],
title='Scatter Matrix',
dimensions=columns)
elif chart_type == 'parallel_coordinates':
columns = parameters.get('columns', df.select_dtypes(include=[np.number]).columns[:5])
fig = px.parallel_coordinates(df,
dimensions=columns,
title='Parallel Coordinates Plot')
elif chart_type == 'box_plots':
columns = parameters.get('columns', df.select_dtypes(include=[np.number]).columns[:5])
fig = px.box(df[columns],
title='Box Plots Comparison')
elif chart_type == '3d_scatter':
x_col = parameters.get('x_column')
y_col = parameters.get('y_column')
z_col = parameters.get('z_column')
if not all([x_col, y_col, z_col]):
return jsonify({'error': '3D scatter requires x, y, and z columns'}), 400
fig = px.scatter_3d(df, x=x_col, y=y_col, z=z_col,
title=f'3D Scatter: {x_col} vs {y_col} vs {z_col}')
else:
return jsonify({'error': 'Unsupported chart type'}), 400
# Convert to JSON
chart_json = json.dumps(fig, cls=PlotlyJSONEncoder)
return jsonify({
'chart': chart_json,
'chartType': chart_type,
'timestamp': datetime.now().isoformat()
})
except Exception as e:
logger.error(f"Visualization error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/data-quality', methods=['POST'])
def assess_data_quality():
"""Data quality assessment endpoint"""
try:
data = request.get_json()
session_id = data.get('sessionId')
file_id = data.get('fileId')
if not all([session_id, file_id]):
return jsonify({'error': 'Session ID and File ID required'}), 400
if session_id not in file_storage or file_id not in file_storage[session_id]:
return jsonify({'error': 'File not found'}), 404
file_info = file_storage[session_id][file_id]
df = load_data_file(file_info['filepath'], file_info['filename'])
quality_report = {
'overall_score': 0,
'dimensions': {
'completeness': {},
'consistency': {},
'validity': {},
'uniqueness': {},
'accuracy': {}
},
'issues': [],
'recommendations': []
}
# Completeness assessment
total_cells = len(df) * len(df.columns)
missing_cells = df.isnull().sum().sum()
completeness_score = ((total_cells - missing_cells) / total_cells) * 100
quality_report['dimensions']['completeness'] = {
'score': completeness_score,
'missing_values': df.isnull().sum().to_dict(),
'missing_percentage': (df.isnull().sum() / len(df) * 100).to_dict()
}
# Consistency assessment
consistency_issues = []
for col in df.select_dtypes(include=['object']):
# Check for inconsistent formatting
values = df[col].dropna().astype(str)
if len(values) > 0:
# Mixed case issues
lowercase_values = set(v.lower() for v in values)
if len(lowercase_values) != len(set(values)):
consistency_issues.append(f"Column '{col}' has mixed case values")
# Leading/trailing spaces
if any(v != v.strip() for v in values):
consistency_issues.append(f"Column '{col}' has leading/trailing spaces")
consistency_score = max(0, 100 - len(consistency_issues) * 10)
quality_report['dimensions']['consistency'] = {
'score': consistency_score,
'issues': consistency_issues
}
# Validity assessment (basic data type validation)
validity_issues = []
for col in df.columns:
if df[col].dtype == 'object':
# Check for potential numeric columns stored as strings
try:
pd.to_numeric(df[col].dropna(), errors='raise')
validity_issues.append(f"Column '{col}' appears to be numeric but stored as text")
except:
pass
validity_score = max(0, 100 - len(validity_issues) * 15)
quality_report['dimensions']['validity'] = {
'score': validity_score,
'issues': validity_issues
}
# Uniqueness assessment
uniqueness_scores = {}
for col in df.columns:
unique_ratio = df[col].nunique() / len(df) if len(df) > 0 else 0
uniqueness_scores[col] = unique_ratio * 100
avg_uniqueness = np.mean(list(uniqueness_scores.values()))
quality_report['dimensions']['uniqueness'] = {
'score': avg_uniqueness,
'column_scores': uniqueness_scores,
'duplicate_rows': df.duplicated().sum()
}
# Overall score calculation
dimension_scores = [
completeness_score,
consistency_score,
validity_score,
avg_uniqueness
]
quality_report['overall_score'] = np.mean(dimension_scores)
# Generate recommendations
if completeness_score < 80:
quality_report['recommendations'].append({
'type': 'completeness',
'priority': 'high',
'message': 'Consider imputing missing values or removing incomplete records'
})
if consistency_score < 70:
quality_report['recommendations'].append({
'type': 'consistency',
'priority': 'medium',
'message': 'Standardize text formatting and remove extra spaces'
})
if validity_score < 80:
quality_report['recommendations'].append({
'type': 'validity',
'priority': 'medium',
'message': 'Review data types and convert where appropriate'
})
return jsonify(quality_report)
except Exception as e:
logger.error(f"Data quality error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/statistical-tests', methods=['POST'])
def run_statistical_tests():
"""Statistical hypothesis testing endpoint"""
try:
data = request.get_json()
session_id = data.get('sessionId')
file_id = data.get('fileId')
test_type = data.get('testType')
parameters = data.get('parameters', {})
if not all([session_id, file_id, test_type]):
return jsonify({'error': 'Session ID, File ID, and test type required'}), 400
if session_id not in file_storage or file_id not in file_storage[session_id]:
return jsonify({'error': 'File not found'}), 404
file_info = file_storage[session_id][file_id]
df = load_data_file(file_info['filepath'], file_info['filename'])
results = {'test_type': test_type, 'results': {}}
if test_type == 'normality':
column = parameters.get('column')
if not column or column not in df.columns:
return jsonify({'error': 'Column not specified or not found'}), 400
data_col = df[column].dropna()
# Shapiro-Wilk test
shapiro_stat, shapiro_p = stats.shapiro(data_col.sample(min(5000, len(data_col))))
# Anderson-Darling test
anderson_result = stats.anderson(data_col)
results['results'] = {
'shapiro_wilk': {
'statistic': shapiro_stat,
'p_value': shapiro_p,
'is_normal': shapiro_p > 0.05
},
'anderson_darling': {
'statistic': anderson_result.statistic,
'critical_values': anderson_result.critical_values.tolist(),
'significance_levels': anderson_result.significance_level.tolist()
}
}
elif test_type == 'correlation_significance':
col1 = parameters.get('column1')
col2 = parameters.get('column2')
if not all([col1, col2]) or col1 not in df.columns or col2 not in df.columns:
return jsonify({'error': 'Both columns must be specified and exist'}), 400
# Pearson correlation
pearson_corr, pearson_p = stats.pearsonr(df[col1].dropna(), df[col2].dropna())
# Spearman correlation
spearman_corr, spearman_p = stats.spearmanr(df[col1].dropna(), df[col2].dropna())
results['results'] = {
'pearson': {
'correlation': pearson_corr,
'p_value': pearson_p,
'significant': pearson_p < 0.05
},
'spearman': {
'correlation': spearman_corr,
'p_value': spearman_p,
'significant': spearman_p < 0.05
}
}
elif test_type == 'group_comparison':
group_col = parameters.get('groupColumn')
value_col = parameters.get('valueColumn')
if not all([group_col, value_col]):
return jsonify({'error': 'Group and value columns required'}), 400
groups = [group for name, group in df.groupby(group_col)[value_col] if len(group) > 1]
if len(groups) == 2:
# Two-sample t-test
t_stat, t_p = stats.ttest_ind(groups[0], groups[1])
# Mann-Whitney U test
u_stat, u_p = stats.mannwhitneyu(groups[0], groups[1])
results['results'] = {
'two_sample_ttest': {
'statistic': t_stat,
'p_value': t_p,
'significant': t_p < 0.05
},
'mann_whitney_u': {
'statistic': u_stat,
'p_value': u_p,
'significant': u_p < 0.05
}
}
elif len(groups) > 2:
# ANOVA
f_stat, f_p = stats.f_oneway(*groups)
# Kruskal-Wallis test
h_stat, h_p = stats.kruskal(*groups)
results['results'] = {
'anova': {
'statistic': f_stat,
'p_value': f_p,
'significant': f_p < 0.05
},
'kruskal_wallis': {
'statistic': h_stat,
'p_value': h_p,
'significant': h_p < 0.05
}
}
else:
return jsonify({'error': 'Unsupported test type'}), 400
return jsonify(results)
except Exception as e:
logger.error(f"Statistical test error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/analysis-history/<session_id>', methods=['GET'])
def get_analysis_history(session_id):
"""Get analysis history for a session"""
try:
if session_id not in analysis_history:
return jsonify({'history': []})
return jsonify({'history': list(analysis_history[session_id].values())})
except Exception as e:
logger.error(f"History error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/export-report', methods=['POST'])
def export_analysis_report():
"""Export comprehensive analysis report"""
try:
data = request.get_json()
session_id = data.get('sessionId')
analyses = data.get('analyses', []) # List of analysis result IDs
if not session_id:
return jsonify({'error': 'Session ID required'}), 400
# Compile report
report = {
'session_id': session_id,
'generated_at': datetime.now().isoformat(),
'analyses': [],
'summary': {
'total_analyses': len(analyses),
'data_files_processed': len(file_storage.get(session_id, {})),
'recommendations': []
}
}
# Load each analysis result
for analysis_id in analyses:
try:
result_files = [
f for f in os.listdir(os.path.join(PROCESSED_FOLDER, session_id))
if f.startswith(analysis_id)
]
if result_files:
filepath = os.path.join(PROCESSED_FOLDER, session_id, result_files[0])
with open(filepath, 'r') as f:
analysis_data = json.load(f)
report['analyses'].append({
'id': analysis_id,
'type': result_files[0].split('_')[1].split('.')[0],
'data': analysis_data
})
except Exception as e:
logger.error(f"Error loading analysis {analysis_id}: {str(e)}")
continue
# Generate summary recommendations
if report['analyses']:
report['summary']['recommendations'] = [
"Review data quality scores and address high-priority issues",
"Consider feature engineering for improved model performance",
"Validate statistical assumptions before drawing conclusions",
"Monitor model performance with cross-validation results"
]
# Save report
report_id = str(uuid.uuid4())
report_dir = os.path.join(PROCESSED_FOLDER, session_id)
os.makedirs(report_dir, exist_ok=True)
report_filepath = os.path.join(report_dir, f"{report_id}_report.json")
with open(report_filepath, 'w') as f:
json.dump(report, f, indent=2, default=str)
return jsonify({
'reportId': report_id,
'message': 'Report generated successfully',
'downloadUrl': f'/api/download/{report_id}?sessionId={session_id}&format=json'
})
except Exception as e:
logger.error(f"Report export error: {str(e)}")
return jsonify({'error': str(e)}), 500
# Update existing endpoints with enhanced functionality
@app.route('/api/preview/<file_id>', methods=['GET'])
def preview_file(file_id):
try:
session_id = request.args.get('sessionId')
if not session_id or session_id not in file_storage:
return jsonify({'error': 'Invalid session'}), 400
if file_id not in file_storage[session_id]:
return jsonify({'error': 'File not found'}), 404
file_info = file_storage[session_id][file_id]
df = load_data_file(file_info['filepath'], file_info['filename'])
# Enhanced preview with data insights
preview_data = {
'basic_info': {
'columns': df.columns.tolist(),
'dtypes': df.dtypes.astype(str).to_dict(),
'shape': df.shape,
'memory_usage': df.memory_usage(deep=True).sum()
},
'sample_data': {
'head': df.head(5).to_dict('records'),
'tail': df.tail(5).to_dict('records')
},
'data_quality': {
'missing_values': df.isnull().sum().to_dict(),
'duplicate_rows': df.duplicated().sum(),
'unique_values': df.nunique().to_dict()
},
'quick_stats': {}
}
# Quick statistics for numeric columns
numeric_cols = df.select_dtypes(include=[np.number]).columns
if len(numeric_cols) > 0:
preview_data['quick_stats']['numeric'] = df[numeric_cols].describe().to_dict()
# Quick statistics for categorical columns
categorical_cols = df.select_dtypes(include=['object']).columns
if len(categorical_cols) > 0:
preview_data['quick_stats']['categorical'] = {}
for col in categorical_cols[:5]: # Limit to first 5 categorical columns
preview_data['quick_stats']['categorical'][col] = {
'top_values': df[col].value_counts().head(5).to_dict()
}
return jsonify(preview_data)
except Exception as e:
logger.error(f"Preview error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/', methods=['GET'])
def home():
return jsonify({
'message': 'Enterprise Data Analytics Platform',
'version': '2.0.0-enterprise',
'features': {
'core': ['data_profiling', 'quality_assessment', 'statistical_tests'],
'machine_learning': ['automl', 'clustering', 'feature_engineering'],
'time_series': ['trend_analysis', 'forecasting', 'anomaly_detection'],
'visualization': ['advanced_charts', 'interactive_plots', 'correlation_heatmaps'],
'enterprise': ['report_generation', 'analysis_history', 'data_governance']
},
'endpoints': {
'data_management': ['/api/upload', '/api/preview/<file_id>', '/api/profile/<file_id>'],
'analytics': ['/api/automl', '/api/clustering', '/api/timeseries'],
'quality': ['/api/data-quality', '/api/statistical-tests'],
'visualization': ['/api/advanced-visualization'],
'enterprise': ['/api/export-report', '/api/analysis-history/<session_id>']
},
'timestamp': datetime.now().isoformat()
})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=False) # Production ready |