File size: 11,414 Bytes
1f2df23 75cbe07 1f2df23 75cbe07 1f2df23 75cbe07 1f2df23 75cbe07 1f2df23 75cbe07 1f2df23 75cbe07 1f2df23 75cbe07 1f2df23 75cbe07 1f2df23 e373285 75cbe07 e373285 75cbe07 e373285 75cbe07 e373285 75cbe07 e373285 75cbe07 e373285 75cbe07 e373285 75cbe07 e373285 75cbe07 e373285 75cbe07 e373285 75cbe07 e373285 75cbe07 e373285 1f2df23 75cbe07 1f2df23 75cbe07 1f2df23 75cbe07 1f2df23 75cbe07 1f2df23 e373285 75cbe07 1f2df23 75cbe07 1f2df23 75cbe07 1f2df23 e373285 75cbe07 e373285 75cbe07 e373285 75cbe07 1f2df23 75cbe07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
from flask import Flask, request, jsonify
from flask_cors import CORS
import torch
import os
import json
import logging
import gc
from contextlib import contextmanager
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
CORS(app)
# Global variables for model and tokenizer
model = None
tokenizer = None
device = None
# Configuration
MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
DATA_FILE = "data/train_data.json"
MODEL_SAVE_DIR = "./results/model"
# Set environment variables
os.environ["HF_HOME"] = "/data/.huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/data/.huggingface"
def initialize_model():
"""Initialize model and tokenizer with error handling"""
global model, tokenizer, device
try:
logger.info("Initializing model and tokenizer...")
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# Import here to avoid import errors during startup
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load tokenizer first (lighter)
logger.info("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
cache_dir="/data/.huggingface"
)
# Add padding token if it doesn't exist
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
logger.info("Loading model...")
# Load model with specific configuration for stability
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
device_map="auto" if device.type == "cuda" else None,
trust_remote_code=True,
cache_dir="/data/.huggingface",
low_cpu_mem_usage=True
)
# Move to device if not using device_map
if device.type == "cpu":
model = model.to(device)
logger.info("Model initialization completed successfully")
return True
except Exception as e:
logger.error(f"Failed to initialize model: {str(e)}")
return False
def load_training_data():
"""Load or initialize training data"""
try:
if os.path.exists(DATA_FILE):
with open(DATA_FILE, 'r') as f:
train_texts = json.load(f)
else:
train_texts = []
os.makedirs(os.path.dirname(DATA_FILE), exist_ok=True)
with open(DATA_FILE, 'w') as f:
json.dump(train_texts, f)
logger.info(f"Loaded {len(train_texts)} training examples")
return train_texts
except Exception as e:
logger.error(f"Error loading training data: {str(e)}")
return []
@contextmanager
def torch_no_grad():
"""Context manager for torch.no_grad with error handling"""
try:
with torch.no_grad():
yield
except Exception as e:
logger.error(f"Error in torch context: {str(e)}")
raise
# Initialize data
train_texts = load_training_data()
@app.route('/')
def home():
"""Root endpoint with system information"""
return jsonify({
'status': 'SEAL Framework API is running',
'version': '1.0.0',
'model': MODEL_NAME,
'model_loaded': model is not None,
'device': str(device) if device else 'Not initialized',
'training_examples': len(train_texts),
'endpoints': {
'/': 'GET - API status and information',
'/adapt': 'POST - Adaptive model training and response',
'/health': 'GET - Health check',
'/init': 'POST - Initialize model (if not already loaded)'
},
'usage': {
'adapt_endpoint': {
'method': 'POST',
'content_type': 'application/json',
'body': {'text': 'Your input text here'},
'example': 'curl -X POST -H "Content-Type: application/json" -d \'{"text":"Hello world"}\' /adapt'
}
}
})
@app.route('/init', methods=['POST'])
def init_model():
"""Manual model initialization endpoint"""
global model, tokenizer
if model is not None:
return jsonify({'status': 'Model already initialized', 'success': True})
success = initialize_model()
if success:
return jsonify({'status': 'Model initialized successfully', 'success': True})
else:
return jsonify({'status': 'Model initialization failed', 'success': False}), 500
@app.route('/health')
def health():
"""Comprehensive health check"""
try:
# Check if model is loaded
if model is None or tokenizer is None:
return jsonify({
'status': 'unhealthy',
'error': 'Model not initialized',
'model_loaded': False,
'suggestion': 'Call /init endpoint to initialize model'
}), 500
# Simple model test
test_input = "Health check"
try:
with torch_no_grad():
inputs = tokenizer(
test_input,
return_tensors="pt",
truncation=True,
max_length=32,
padding=True
).to(device)
outputs = model.generate(
**inputs,
max_length=40,
num_return_sequences=1,
do_sample=False,
pad_token_id=tokenizer.pad_token_id
)
except Exception as e:
raise Exception(f"Model inference failed: {str(e)}")
return jsonify({
'status': 'healthy',
'model_loaded': True,
'device': str(device),
'training_examples': len(train_texts),
'torch_version': torch.__version__
})
except Exception as e:
logger.error(f"Health check failed: {str(e)}")
return jsonify({
'status': 'unhealthy',
'error': str(e),
'model_loaded': model is not None
}), 500
@app.route('/adapt', methods=['POST'])
def adapt_model():
"""Simplified adaptive model endpoint"""
global train_texts
try:
# Check if model is initialized
if model is None or tokenizer is None:
return jsonify({
'error': 'Model not initialized. Call /init endpoint first.',
'suggestion': 'POST to /init to initialize the model'
}), 500
# Get input
data = request.json
if not data or 'text' not in data:
return jsonify({'error': 'No text provided in request body'}), 400
user_input = data['text'].strip()
if not user_input:
return jsonify({'error': 'Empty text provided'}), 400
logger.info(f"Processing input: {user_input[:50]}...")
# Generate self-edit (simplified approach)
try:
with torch_no_grad():
prompt = f"Rephrase this text: {user_input}"
inputs = tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=128,
padding=True
).to(device)
self_edit_output = model.generate(
**inputs,
max_length=200,
num_return_sequences=1,
do_sample=True,
temperature=0.7,
pad_token_id=tokenizer.pad_token_id
)
self_edit = tokenizer.decode(
self_edit_output[0],
skip_special_tokens=True
).replace(prompt, "").strip()
except Exception as e:
logger.error(f"Self-edit generation failed: {str(e)}")
self_edit = f"Self-edit failed: {str(e)}"
# Generate response (simplified)
try:
with torch_no_grad():
response_inputs = tokenizer(
user_input,
return_tensors="pt",
truncation=True,
max_length=128,
padding=True
).to(device)
response_output = model.generate(
**response_inputs,
max_length=256,
num_return_sequences=1,
do_sample=True,
temperature=0.8,
pad_token_id=tokenizer.pad_token_id
)
response = tokenizer.decode(
response_output[0],
skip_special_tokens=True
).replace(user_input, "").strip()
except Exception as e:
logger.error(f"Response generation failed: {str(e)}")
response = f"Response generation failed: {str(e)}"
# Save training data (simplified - no actual fine-tuning for stability)
try:
train_texts.append({
"prompt": user_input,
"completion": self_edit,
"timestamp": str(torch.now() if hasattr(torch, 'now') else 'unknown')
})
# Save to file
with open(DATA_FILE, 'w') as f:
json.dump(train_texts, f, indent=2)
except Exception as e:
logger.error(f"Failed to save training data: {str(e)}")
# Clean up GPU memory
if device.type == "cuda":
torch.cuda.empty_cache()
gc.collect()
return jsonify({
'input': user_input,
'self_edit': self_edit,
'response': response,
'training_examples': len(train_texts),
'status': 'Processing completed successfully',
'note': 'Fine-tuning disabled for stability - using generation only'
})
except Exception as e:
logger.error(f"Adapt endpoint error: {str(e)}")
return jsonify({
'error': str(e),
'type': type(e).__name__,
'suggestion': 'Check logs for detailed error information'
}), 500
@app.errorhandler(404)
def not_found(error):
return jsonify({
'error': 'Endpoint not found',
'available_endpoints': ['/health', '/adapt', '/init', '/']
}), 404
@app.errorhandler(500)
def internal_error(error):
return jsonify({
'error': 'Internal server error',
'message': 'Check server logs for details'
}), 500
# Initialize model on startup (with fallback)
if __name__ == '__main__':
logger.info("Starting SEAL Framework API...")
initialize_model()
app.run(host='0.0.0.0', port=7860, debug=False)
else:
# For production deployment
logger.info("SEAL Framework API starting in production mode...")
# Don't initialize model immediately in production to avoid startup timeouts |