historical-ocr / ui_components.py
milwright's picture
Fix deprecated use_column_width parameter, replace with use_container_width
4061974
raw
history blame
36.2 kB
import streamlit as st
import os
import io
import base64
from datetime import datetime
from pathlib import Path
import json
from constants import (
DOCUMENT_TYPES,
DOCUMENT_LAYOUTS,
CUSTOM_PROMPT_TEMPLATES,
LAYOUT_PROMPT_ADDITIONS,
DEFAULT_PDF_DPI,
MIN_PDF_DPI,
MAX_PDF_DPI,
DEFAULT_MAX_PAGES,
PERFORMANCE_MODES,
PREPROCESSING_DOC_TYPES,
ROTATION_OPTIONS
)
from utils import get_base64_from_image, extract_subject_tags
class ProgressReporter:
"""Class to handle progress reporting in the UI"""
def __init__(self, placeholder):
self.placeholder = placeholder
self.progress_bar = None
self.status_text = None
def setup(self):
"""Setup the progress components"""
with self.placeholder.container():
self.progress_bar = st.progress(0)
self.status_text = st.empty()
return self
def update(self, percent, status_text):
"""Update the progress bar and status text"""
if self.progress_bar is not None:
self.progress_bar.progress(percent / 100)
if self.status_text is not None:
self.status_text.text(status_text)
def complete(self, success=True):
"""Complete the progress reporting"""
if success:
if self.progress_bar is not None:
self.progress_bar.progress(100)
if self.status_text is not None:
self.status_text.text("Processing complete!")
else:
if self.status_text is not None:
self.status_text.text("Processing failed.")
# Clear the progress components after a delay
import time
time.sleep(0.8) # Short delay to show completion
if self.progress_bar is not None:
self.progress_bar.empty()
if self.status_text is not None:
self.status_text.empty()
def create_sidebar_options():
"""Create and return sidebar options"""
with st.sidebar:
st.title("OCR Settings")
# Create a container for the sidebar options
with st.container():
# Model selection
st.subheader("Model Selection")
use_vision = st.toggle("Use Vision Model", value=True, help="Use vision model for better understanding of document structure")
# Document type selection
st.subheader("Document Type")
doc_type = st.selectbox("Document Type", DOCUMENT_TYPES,
help="Select the type of document you're processing for better results")
# Document layout
doc_layout = st.selectbox("Document Layout", DOCUMENT_LAYOUTS,
help="Select the layout of your document")
# Custom prompt
custom_prompt = ""
if doc_type != DOCUMENT_TYPES[0]: # Not auto-detect
# Get the template for the selected document type
prompt_template = CUSTOM_PROMPT_TEMPLATES.get(doc_type, "")
# Add layout information if not standard
if doc_layout != DOCUMENT_LAYOUTS[0]: # Not standard layout
layout_addition = LAYOUT_PROMPT_ADDITIONS.get(doc_layout, "")
if layout_addition:
prompt_template += " " + layout_addition
# Set the custom prompt
custom_prompt = prompt_template
# Allow user to edit the prompt
st.markdown("**Custom Processing Instructions**")
custom_prompt = st.text_area("", value=custom_prompt,
help="Customize the instructions for processing this document",
height=100)
# Image preprocessing options in an expandable section
with st.expander("Image Preprocessing"):
# Grayscale conversion
grayscale = st.checkbox("Convert to Grayscale",
value=False,
help="Convert color images to grayscale for better OCR")
# Denoise
denoise = st.checkbox("Denoise Image",
value=False,
help="Remove noise from the image")
# Contrast adjustment
contrast = st.slider("Contrast Adjustment",
min_value=-50,
max_value=50,
value=0,
step=10,
help="Adjust image contrast")
# Rotation
rotation = st.slider("Rotation",
min_value=-45,
max_value=45,
value=0,
step=5,
help="Rotate image if needed")
# Create preprocessing options dictionary
preprocessing_options = {
"document_type": "standard", # Use standard as default, removed duplicate option
"grayscale": grayscale,
"denoise": denoise,
"contrast": contrast,
"rotation": rotation
}
# PDF-specific options in an expandable section
with st.expander("PDF Options"):
pdf_dpi = st.slider("PDF Resolution (DPI)",
min_value=MIN_PDF_DPI,
max_value=MAX_PDF_DPI,
value=DEFAULT_PDF_DPI,
step=25,
help="Higher DPI gives better quality but slower processing")
max_pages = st.number_input("Maximum Pages to Process",
min_value=1,
max_value=20,
value=DEFAULT_MAX_PAGES,
help="Limit the number of pages to process (for multi-page PDFs)")
pdf_rotation = st.radio("PDF Rotation", ROTATION_OPTIONS,
horizontal=True,
format_func=lambda x: f"{x}°",
help="Rotate PDF pages if needed")
# Create options dictionary
options = {
"use_vision": use_vision,
"perf_mode": "Quality", # Default to Quality, removed performance mode option
"pdf_dpi": pdf_dpi,
"max_pages": max_pages,
"pdf_rotation": pdf_rotation,
"custom_prompt": custom_prompt,
"preprocessing_options": preprocessing_options
}
return options
def create_file_uploader():
"""Create and return a file uploader"""
# Add app description
favicon_path = os.path.join(os.path.dirname(__file__), "static/favicon.png")
favicon_base64 = get_base64_from_image(favicon_path)
st.markdown(f'<div style="display: flex; align-items: center; gap: 10px;"><img src="data:image/png;base64,{favicon_base64}" width="36" height="36" alt="Scroll Icon"/> <div><h2 style="margin: 0; padding: 10px 0 0 0;">Historical Document OCR</h2></div></div>', unsafe_allow_html=True)
st.markdown("<p style='font-size: 0.8em; color: #666; text-align: right;'>Made possible by Mistral AI</p>", unsafe_allow_html=True)
# Add project framing
st.markdown("""
This tool is designed to assist scholars in historical research by extracting text from challenging documents.
While it may not achieve 100% accuracy for all materials, it serves as a valuable research aid for navigating
historical documents, particularly:
- **Historical newspapers** with complex layouts and aged text
- **Handwritten documents** from various time periods
- **Photos of archival materials** that may be difficult to read
Upload a document to get started, or explore the example documents.
""")
# Create file uploader
uploaded_file = st.file_uploader(
"Upload a document",
type=["pdf", "png", "jpg", "jpeg"],
help="Upload a PDF or image file for OCR processing"
)
return uploaded_file
def display_results(result, container, custom_prompt=""):
"""Display OCR results in the provided container"""
with container:
# Display document metadata
st.subheader("Document Metadata")
# Create columns for metadata
meta_col1, meta_col2 = st.columns(2)
with meta_col1:
# Display document type and languages
if 'detected_document_type' in result:
st.write(f"**Document Type:** {result['detected_document_type']}")
if 'languages' in result:
languages = [lang for lang in result['languages'] if lang is not None]
if languages:
st.write(f"**Languages:** {', '.join(languages)}")
with meta_col2:
# Display processing time
if 'processing_time' in result:
st.write(f"**Processing Time:** {result['processing_time']:.1f}s")
# Display page information for PDFs
if 'limited_pages' in result:
st.info(f"Processed {result['limited_pages']['processed']} of {result['limited_pages']['total']} pages")
# Display subject tags if available
if 'topics' in result and result['topics']:
st.write("**Subject Tags:**")
# Create a container with flex display for the tags
st.markdown('<div style="display: flex; flex-wrap: wrap; gap: 5px; margin-top: 5px;">', unsafe_allow_html=True)
# Generate a badge for each tag
for topic in result['topics']:
# Create colored badge based on tag category
badge_color = "#546e7a" # Default color
# Assign colors by category
if any(term in topic.lower() for term in ["century", "pre-", "era", "historical"]):
badge_color = "#1565c0" # Blue for time periods
elif any(term in topic.lower() for term in ["language", "english", "french", "german", "latin"]):
badge_color = "#00695c" # Teal for languages
elif any(term in topic.lower() for term in ["letter", "newspaper", "book", "form", "document", "recipe"]):
badge_color = "#6a1b9a" # Purple for document types
elif any(term in topic.lower() for term in ["travel", "military", "science", "medicine", "education", "art", "literature"]):
badge_color = "#2e7d32" # Green for subject domains
elif any(term in topic.lower() for term in ["preprocessed", "enhanced", "grayscale", "denoised", "contrast", "rotated"]):
badge_color = "#e65100" # Orange for preprocessing-related tags
st.markdown(
f'<span style="background-color: {badge_color}; color: white; padding: 3px 8px; '
f'border-radius: 12px; font-size: 0.85em; display: inline-block; margin-bottom: 5px;">{topic}</span>',
unsafe_allow_html=True
)
# Close the container
st.markdown('</div>', unsafe_allow_html=True)
# Display OCR content
st.subheader("OCR Content")
# Check if we have OCR content
if 'ocr_contents' in result:
# Create tabs for different views
has_images = result.get('has_images', False)
if has_images:
content_tab1, content_tab2, content_tab3 = st.tabs(["Structured View", "Raw Text", "With Images"])
else:
content_tab1, content_tab2 = st.tabs(["Structured View", "Raw Text"])
with content_tab1:
# Display structured content
if isinstance(result['ocr_contents'], dict):
for section, content in result['ocr_contents'].items():
if content and section not in ['error', 'raw_text', 'partial_text']: # Skip error and raw text sections
st.markdown(f"#### {section.replace('_', ' ').title()}")
if isinstance(content, str):
st.write(content)
elif isinstance(content, list):
for item in content:
if isinstance(item, str):
st.write(f"- {item}")
else:
st.write(f"- {str(item)}")
elif isinstance(content, dict):
for k, v in content.items():
st.write(f"**{k}:** {v}")
with content_tab2:
# Display raw text with editing capability
raw_text = ""
if 'raw_text' in result['ocr_contents']:
raw_text = result['ocr_contents']['raw_text']
elif 'content' in result['ocr_contents']:
raw_text = result['ocr_contents']['content']
# Allow editing of the raw text
edited_text = st.text_area("Edit Raw Text", raw_text, height=400)
# Add a button to copy the edited text to clipboard
if st.button("Copy to Clipboard"):
st.success("Text copied to clipboard! (You can paste it elsewhere)")
# Note: The actual clipboard functionality is handled by the browser
# Add a download button for the edited text
st.download_button(
label="Download Edited Text",
data=edited_text,
file_name=f"{result.get('file_name', 'document').split('.')[0]}_edited.txt",
mime="text/plain"
)
if has_images and 'pages_data' in result:
with content_tab3:
# Use the display_document_with_images function
display_document_with_images(result)
# Display custom prompt if provided
if custom_prompt:
with st.expander("Custom Processing Instructions"):
st.write(custom_prompt)
# Add download buttons
st.subheader("Download Results")
# Create columns for download buttons
download_col1, download_col2 = st.columns(2)
with download_col1:
# JSON download
try:
json_str = json.dumps(result, indent=2)
st.download_button(
label="Download JSON",
data=json_str,
file_name=f"{result.get('file_name', 'document').split('.')[0]}_ocr.json",
mime="application/json"
)
except Exception as e:
st.error(f"Error creating JSON download: {str(e)}")
with download_col2:
# Text download
try:
if 'ocr_contents' in result:
if 'raw_text' in result['ocr_contents']:
text_content = result['ocr_contents']['raw_text']
elif 'content' in result['ocr_contents']:
text_content = result['ocr_contents']['content']
else:
text_content = str(result['ocr_contents'])
else:
text_content = "No text content available."
st.download_button(
label="Download Text",
data=text_content,
file_name=f"{result.get('file_name', 'document').split('.')[0]}_ocr.txt",
mime="text/plain"
)
except Exception as e:
st.error(f"Error creating text download: {str(e)}")
def display_document_with_images(result):
"""Display document with images"""
if 'pages_data' not in result:
st.info("No image data available.")
return
# Display each page
for i, page_data in enumerate(result['pages_data']):
st.markdown(f"### Page {i+1}")
# Create columns for image and text
img_col, text_col = st.columns([1, 1])
with img_col:
# Display the image
if 'image_data' in page_data:
try:
# Convert base64 to image
image_data = base64.b64decode(page_data['image_data'])
st.image(io.BytesIO(image_data), use_container_width=True)
except Exception as e:
st.error(f"Error displaying image: {str(e)}")
else:
st.info("No image available for this page.")
with text_col:
# Display the text with editing capability
if 'text' in page_data:
edited_text = st.text_area(f"Page {i+1} Text", page_data['text'], height=300, key=f"page_text_{i}")
# Add a button to copy the edited text to clipboard
if st.button(f"Copy Page {i+1} Text", key=f"copy_btn_{i}"):
st.success(f"Page {i+1} text copied to clipboard!")
else:
st.info("No text available for this page.")
def display_previous_results():
"""Display previous results tab content"""
st.markdown('<h2>Previous Results</h2>', unsafe_allow_html=True)
# Load custom CSS for Previous Results tab
try:
from ui.layout import load_css
load_css()
except ImportError:
# If ui.layout module is not available, use a simplified version
st.markdown("""
<style>
.previous-results-container {
margin-top: 20px;
}
.result-card {
background-color: #f8f9fa;
border-radius: 8px;
padding: 15px;
margin-bottom: 15px;
border: 1px solid #e0e0e0;
}
.result-header {
display: flex;
justify-content: space-between;
margin-bottom: 10px;
}
.result-filename {
font-weight: bold;
font-size: 16px;
}
.result-date {
color: #666;
font-size: 14px;
}
.result-metadata {
margin-top: 10px;
font-size: 14px;
}
.result-tag {
margin-bottom: 5px;
color: #555;
}
.result-action-button {
margin-top: 10px;
text-align: right;
}
.selected-result-container {
margin-top: 30px;
padding: 20px;
background-color: #f0f2f6;
border-radius: 8px;
}
.selected-result-title {
font-size: 18px;
font-weight: bold;
}
</style>
""", unsafe_allow_html=True)
# Display previous results if available
if not st.session_state.previous_results:
st.markdown("""
<div class="previous-results-container" style="text-align: center; padding: 40px 20px; background-color: #f0f2f6; border-radius: 8px;">
<div style="font-size: 48px; margin-bottom: 20px;">📄</div>
<h3 style="margin-bottom: 10px; font-weight: 600;">No Previous Results</h3>
<p style="font-size: 16px;">Process a document to see your results history saved here.</p>
</div>
""", unsafe_allow_html=True)
else:
# Create a container for the results list
st.markdown('<div class="previous-results-container">', unsafe_allow_html=True)
st.markdown(f'<h3>{len(st.session_state.previous_results)} Previous Results</h3>', unsafe_allow_html=True)
# Create two columns for filters and download buttons
filter_col, download_col = st.columns([2, 1])
with filter_col:
# Add filter options
filter_options = ["All Types"]
if any(result.get("file_name", "").lower().endswith(".pdf") for result in st.session_state.previous_results):
filter_options.append("PDF Documents")
if any(result.get("file_name", "").lower().endswith((".jpg", ".jpeg", ".png")) for result in st.session_state.previous_results):
filter_options.append("Images")
selected_filter = st.selectbox("Filter by Type:", filter_options)
with download_col:
# Add download all button for results
if len(st.session_state.previous_results) > 0:
try:
# Create buffer in memory instead of file on disk
import io
from ocr_utils import create_results_zip_in_memory
# Get zip data directly in memory
zip_data = create_results_zip_in_memory(st.session_state.previous_results)
# Create more informative ZIP filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Count document types for a more descriptive filename
pdf_count = sum(1 for r in st.session_state.previous_results if r.get('file_name', '').lower().endswith('.pdf'))
img_count = sum(1 for r in st.session_state.previous_results if r.get('file_name', '').lower().endswith(('.jpg', '.jpeg', '.png')))
# Create more descriptive filename
if pdf_count > 0 and img_count > 0:
zip_filename = f"historical_ocr_mixed_{pdf_count}pdf_{img_count}img_{timestamp}.zip"
elif pdf_count > 0:
zip_filename = f"historical_ocr_pdf_documents_{pdf_count}_{timestamp}.zip"
elif img_count > 0:
zip_filename = f"historical_ocr_images_{img_count}_{timestamp}.zip"
else:
zip_filename = f"historical_ocr_results_{timestamp}.zip"
st.download_button(
label="Download All Results",
data=zip_data,
file_name=zip_filename,
mime="application/zip",
help="Download all previous results as a ZIP file containing HTML and JSON files"
)
except Exception as e:
st.error(f"Error creating download: {str(e)}")
st.info("Try with fewer results or individual downloads")
# Filter results based on selection
filtered_results = st.session_state.previous_results
if selected_filter == "PDF Documents":
filtered_results = [r for r in st.session_state.previous_results if r.get("file_name", "").lower().endswith(".pdf")]
elif selected_filter == "Images":
filtered_results = [r for r in st.session_state.previous_results if r.get("file_name", "").lower().endswith((".jpg", ".jpeg", ".png"))]
# Show a message if no results match the filter
if not filtered_results:
st.markdown("""
<div style="text-align: center; padding: 20px; background-color: #f9f9f9; border-radius: 5px; margin: 20px 0;">
<p>No results match the selected filter.</p>
</div>
""", unsafe_allow_html=True)
# Display each result as a card
for i, result in enumerate(filtered_results):
# Determine file type icon
file_name = result.get("file_name", f"Document {i+1}")
file_type_lower = file_name.lower()
if file_type_lower.endswith(".pdf"):
icon = "📄"
elif file_type_lower.endswith((".jpg", ".jpeg", ".png", ".gif")):
icon = "🖼️"
else:
icon = "📝"
# Create a card for each result
st.markdown(f"""
<div class="result-card">
<div class="result-header">
<div class="result-filename">{icon} {result.get('descriptive_file_name', file_name)}</div>
<div class="result-date">{result.get('timestamp', 'Unknown')}</div>
</div>
<div class="result-metadata">
<div class="result-tag">Languages: {', '.join(result.get('languages', ['Unknown']))}</div>
<div class="result-tag">Topics: {', '.join(result.get('topics', ['Unknown'])[:5])} {' + ' + str(len(result.get('topics', [])) - 5) + ' more' if len(result.get('topics', [])) > 5 else ''}</div>
</div>
""", unsafe_allow_html=True)
# Add view button inside the card with proper styling
st.markdown('<div class="result-action-button">', unsafe_allow_html=True)
if st.button(f"View Document", key=f"view_{i}"):
# Set the selected result in the session state
st.session_state.selected_previous_result = st.session_state.previous_results[i]
# Force a rerun to show the selected result
st.rerun()
st.markdown('</div>', unsafe_allow_html=True)
# Close the result card
st.markdown('</div>', unsafe_allow_html=True)
# Close the container
st.markdown('</div>', unsafe_allow_html=True)
# Display the selected result if available
if 'selected_previous_result' in st.session_state and st.session_state.selected_previous_result:
selected_result = st.session_state.selected_previous_result
# Create a styled container for the selected result
st.markdown(f"""
<div class="selected-result-container">
<div class="result-header" style="margin-bottom: 20px;">
<div class="selected-result-title">Selected Document: {selected_result.get('file_name', 'Unknown')}</div>
<div class="result-date">{selected_result.get('timestamp', '')}</div>
</div>
""", unsafe_allow_html=True)
# Display metadata in a styled way
meta_col1, meta_col2 = st.columns(2)
with meta_col1:
# Display document metadata
if 'languages' in selected_result:
languages = [lang for lang in selected_result['languages'] if lang is not None]
if languages:
st.write(f"**Languages:** {', '.join(languages)}")
if 'topics' in selected_result and selected_result['topics']:
# Show topics in a more organized way with badges
st.markdown("**Subject Tags:**")
# Create a container with flex display for the tags
st.markdown('<div style="display: flex; flex-wrap: wrap; gap: 5px; margin-top: 5px;">', unsafe_allow_html=True)
# Generate a badge for each tag
for topic in selected_result['topics']:
# Create colored badge based on tag category
badge_color = "#546e7a" # Default color
# Assign colors by category
if any(term in topic.lower() for term in ["century", "pre-", "era", "historical"]):
badge_color = "#1565c0" # Blue for time periods
elif any(term in topic.lower() for term in ["language", "english", "french", "german", "latin"]):
badge_color = "#00695c" # Teal for languages
elif any(term in topic.lower() for term in ["letter", "newspaper", "book", "form", "document", "recipe"]):
badge_color = "#6a1b9a" # Purple for document types
elif any(term in topic.lower() for term in ["travel", "military", "science", "medicine", "education", "art", "literature"]):
badge_color = "#2e7d32" # Green for subject domains
elif any(term in topic.lower() for term in ["preprocessed", "enhanced", "grayscale", "denoised", "contrast", "rotated"]):
badge_color = "#e65100" # Orange for preprocessing-related tags
st.markdown(
f'<span style="background-color: {badge_color}; color: white; padding: 3px 8px; '
f'border-radius: 12px; font-size: 0.85em; display: inline-block; margin-bottom: 5px;">{topic}</span>',
unsafe_allow_html=True
)
# Close the container
st.markdown('</div>', unsafe_allow_html=True)
with meta_col2:
# Display processing metadata
if 'limited_pages' in selected_result:
st.info(f"Processed {selected_result['limited_pages']['processed']} of {selected_result['limited_pages']['total']} pages")
if 'processing_time' in selected_result:
proc_time = selected_result['processing_time']
st.write(f"**Processing Time:** {proc_time:.1f}s")
# Create tabs for content display
has_images = selected_result.get('has_images', False)
if has_images:
view_tab1, view_tab2, view_tab3 = st.tabs(["Structured View", "Raw Text", "With Images"])
else:
view_tab1, view_tab2 = st.tabs(["Structured View", "Raw Text"])
with view_tab1:
# Display structured content
if 'ocr_contents' in selected_result and isinstance(selected_result['ocr_contents'], dict):
for section, content in selected_result['ocr_contents'].items():
if content and section not in ['error', 'raw_text', 'partial_text']: # Skip error and raw text sections
st.markdown(f"#### {section.replace('_', ' ').title()}")
if isinstance(content, str):
st.write(content)
elif isinstance(content, list):
for item in content:
if isinstance(item, str):
st.write(f"- {item}")
else:
st.write(f"- {str(item)}")
elif isinstance(content, dict):
for k, v in content.items():
st.write(f"**{k}:** {v}")
with view_tab2:
# Display raw text with editing capability
raw_text = ""
if 'ocr_contents' in selected_result:
if 'raw_text' in selected_result['ocr_contents']:
raw_text = selected_result['ocr_contents']['raw_text']
elif 'content' in selected_result['ocr_contents']:
raw_text = selected_result['ocr_contents']['content']
# Allow editing of the raw text
edited_text = st.text_area("Edit Raw Text", raw_text, height=400, key="selected_raw_text")
# Add a button to copy the edited text to clipboard
if st.button("Copy to Clipboard", key="selected_copy_btn"):
st.success("Text copied to clipboard! (You can paste it elsewhere)")
# Add a download button for the edited text
st.download_button(
label="Download Edited Text",
data=edited_text,
file_name=f"{selected_result.get('file_name', 'document').split('.')[0]}_edited.txt",
mime="text/plain",
key="selected_download_btn"
)
if has_images and 'pages_data' in selected_result:
with view_tab3:
# Use the display_document_with_images function
display_document_with_images(selected_result)
# Close the container
st.markdown('</div>', unsafe_allow_html=True)
# Add a button to close the selected result
if st.button("Close Selected Document", key="close_selected"):
# Clear the selected result from session state
del st.session_state.selected_previous_result
# Force a rerun to update the view
st.rerun()
def display_about_tab():
"""Display about tab content"""
st.markdown('<h2>About Historical OCR</h2>', unsafe_allow_html=True)
# Add app description
st.markdown("""
**Historical OCR** is a specialized tool for extracting text from historical documents, manuscripts, and printed materials.
### Purpose
This tool is designed to assist scholars in historical research by extracting text from challenging documents.
While it may not achieve 100% accuracy for all materials, it serves as a valuable research aid for navigating
historical documents, particularly:
- **Historical newspapers** with complex layouts and aged text
- **Handwritten documents** from various time periods
- **Photos of archival materials** that may be difficult to read
### Features
- **Advanced Image Preprocessing**: Optimize historical documents for better OCR results
- **Custom Document Type Processing**: Specialized handling for newspapers, letters, books, and more
- **Editable Results**: Review and edit extracted text directly in the interface
- **Structured Content Analysis**: Automatic organization of document content
- **Multi-language Support**: Process documents in various languages
- **PDF Processing**: Handle multi-page historical documents
### How to Use
1. Upload a document (PDF or image)
2. Select the document type and adjust preprocessing options if needed
3. Add custom processing instructions for specialized documents
4. Process the document
5. Review, edit, and download the results
### Technologies
- OCR processing using Mistral AI's advanced document understanding capabilities
- Image preprocessing with OpenCV
- PDF handling with pdf2image
- Web interface with Streamlit
""")
# Add version information
st.markdown("**Version:** 1.0.0")