Pringled's picture
Updates
c2eeff5
raw
history blame
23.9 kB
import gradio as gr
from datasets import load_dataset
import numpy as np
import model2vec
from reach import Reach
from difflib import ndiff
import time
# Load the model at startup
model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
# Default dataset parameters
default_dataset1_name = "sst2"
default_dataset1_split = "train"
default_dataset2_name = "sst2"
default_dataset2_split = "validation"
default_text_column = "sentence"
default_threshold = 0.9
# Load the default datasets at startup
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
def batch_iterable(iterable, batch_size):
"""Helper function to create batches from an iterable."""
for i in range(0, len(iterable), batch_size):
yield iterable[i:i + batch_size]
def log_time(message, start_time=None, logs=None):
"""Helper function to log the start and end times."""
current_time = time.time()
if start_time is not None:
elapsed = current_time - start_time
log_message = f"{message} - Took {elapsed:.2f} seconds"
else:
log_message = f"{message} - Started"
if logs is not None:
logs.append(log_message)
def compute_embeddings(texts, batch_size, progress, logs, desc="Computing embeddings"):
embeddings = []
total_batches = (len(texts) + batch_size - 1) // batch_size
for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
batch_embeddings = model.encode(batch_texts, show_progressbar=False)
embeddings.append(batch_embeddings)
progress((i + 1) / total_batches, desc=desc)
return np.concatenate(embeddings, axis=0)
def deduplicate(
embedding_matrix: np.ndarray,
threshold: float,
batch_size: int = 1024,
progress=None,
logs=None
) -> tuple[np.ndarray, dict[int, int]]:
# Building the index
log_time("Building search index", logs=logs)
reach = Reach(
vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
)
deduplicated_indices = set(range(len(embedding_matrix)))
duplicate_to_original_mapping = {}
# Finding nearest neighbors
log_time("Finding nearest neighbors", logs=logs)
results = reach.nearest_neighbor_threshold(
embedding_matrix,
threshold=threshold,
batch_size=batch_size,
show_progressbar=False, # Disable internal progress bar
)
# Processing duplicates with a progress bar
total_items = len(embedding_matrix)
log_time("Processing duplicates", logs=logs)
for i, similar_items in enumerate(
progress.tqdm(results, desc="Processing duplicates", total=total_items)
):
if i not in deduplicated_indices:
continue
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
for sim_idx in similar_indices:
if sim_idx in deduplicated_indices:
deduplicated_indices.remove(sim_idx)
duplicate_to_original_mapping[sim_idx] = i
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
def display_word_differences(x: str, y: str) -> str:
diff = ndiff(x.split(), y.split())
return " ".join([word for word in diff if word.startswith(("+", "-"))])
def encode_texts(texts, progress=None, logs=None):
embedding_matrix = model.encode(texts, show_progressbar=False)
log_time("Encoding texts completed", logs=logs)
return embedding_matrix
def perform_deduplication(
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name="",
dataset2_split="",
dataset2_text_column="",
threshold=default_threshold,
progress=gr.Progress(track_tqdm=True),
):
logs = [] # To store log messages
try:
# Convert threshold to float
threshold = float(threshold)
# Initialize status message
log_time("Deduplication started", logs=logs)
if deduplication_type == "Single dataset":
# Load Dataset 1
start_time = time.time()
log_time("Loading Dataset 1", logs=logs)
if (
dataset1_name == default_dataset1_name
and dataset1_split == default_dataset1_split
):
ds = ds_default1
else:
ds = load_dataset(dataset1_name, split=dataset1_split)
log_time("Loading Dataset 1 completed", start_time=start_time, logs=logs)
# Extract texts
start_time = time.time()
log_time("Extracting texts from Dataset 1", logs=logs)
texts = [example[dataset1_text_column] for example in ds]
log_time("Extracting texts from Dataset 1 completed", start_time=start_time, logs=logs)
# Compute embeddings
start_time = time.time()
log_time("Computing embeddings for Dataset 1", logs=logs)
embedding_matrix = encode_texts(texts, progress=progress, logs=logs)
log_time("Computing embeddings for Dataset 1 completed", start_time=start_time, logs=logs)
# Deduplicate
start_time = time.time()
log_time("Deduplicating embeddings", logs=logs)
deduplicated_indices, duplicate_to_original_mapping = deduplicate(
embedding_matrix, threshold, progress=progress, logs=logs
)
log_time("Deduplication completed", start_time=start_time, logs=logs)
# Prepare the results
num_duplicates = len(duplicate_to_original_mapping)
num_total = len(texts)
num_deduplicated = len(deduplicated_indices)
result_text = f"**Total documents:** {num_total}\n"
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
result_text += (
f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
)
# Show deduplicated examples
if num_duplicates > 0:
result_text += "**Examples of duplicates found:**\n\n"
num_examples = min(5, num_duplicates)
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
original_text = texts[original_idx]
duplicate_text = texts[duplicate_idx]
differences = display_word_differences(original_text, duplicate_text)
result_text += f"**Original text:**\n{original_text}\n\n"
result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
result_text += f"**Differences:**\n{differences}\n"
result_text += "-" * 50 + "\n\n"
else:
result_text += "No duplicates found."
log_time("Deduplication process finished", logs=logs)
full_log = "\n".join(logs) # Combine all logs into one output
yield full_log, result_text
except Exception as e:
full_log = "\n".join(logs) # Combine all logs into one output in case of an error
yield f"An error occurred: {e}", ""
raise e
# Adjust the height of the status_output component using custom CSS
with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
gr.Markdown("# Semantic Deduplication")
deduplication_type = gr.Radio(
choices=["Single dataset", "Cross-dataset"],
label="Deduplication Type",
value="Single dataset",
)
with gr.Row():
dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
dataset2_inputs = gr.Column(visible=False)
with dataset2_inputs:
gr.Markdown("### Dataset 2")
with gr.Row():
dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
)
compute_button = gr.Button("Compute")
# Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
status_output = gr.Markdown(elem_id="status_output")
result_output = gr.Markdown()
# Function to update the visibility of dataset2_inputs
def update_visibility(deduplication_type_value):
if deduplication_type_value == "Cross-dataset":
return gr.update(visible=True)
else:
return gr.update(visible=False)
deduplication_type.change(
update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
)
compute_button.click(
fn=perform_deduplication,
inputs=[
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name,
dataset2_split,
dataset2_text_column,
threshold,
],
outputs=[status_output, result_output],
)
demo.launch()
# import gradio as gr
# from datasets import load_dataset
# import numpy as np
# #from model2vec import StaticModel
# import model2vec
# from reach import Reach
# from difflib import ndiff
# # Load the model at startup
# model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
# # Default dataset parameters
# default_dataset1_name = "sst2"
# default_dataset1_split = "train"
# default_dataset2_name = "sst2"
# default_dataset2_split = "validation"
# default_text_column = "sentence"
# default_threshold = 0.9
# # Load the default datasets at startup
# ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
# ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
# def batch_iterable(iterable, batch_size):
# """Helper function to create batches from an iterable."""
# for i in range(0, len(iterable), batch_size):
# yield iterable[i:i + batch_size]
# def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
# embeddings = []
# total_batches = (len(texts) + batch_size - 1) // batch_size
# for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
# batch_embeddings = model.encode(batch_texts, show_progressbar=False)
# embeddings.append(batch_embeddings)
# progress((i + 1) / total_batches, desc=desc)
# return np.concatenate(embeddings, axis=0)
# def deduplicate(
# embedding_matrix: np.ndarray,
# threshold: float,
# batch_size: int = 1024,
# progress=None
# ) -> tuple[np.ndarray, dict[int, int]]:
# # Building the index
# progress(0, desc="Building search index...")
# reach = Reach(
# vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
# )
# deduplicated_indices = set(range(len(embedding_matrix)))
# duplicate_to_original_mapping = {}
# # Finding nearest neighbors
# progress(0, desc="Finding nearest neighbors...")
# results = reach.nearest_neighbor_threshold(
# embedding_matrix,
# threshold=threshold,
# batch_size=batch_size,
# show_progressbar=False, # Disable internal progress bar
# )
# # Processing duplicates with a progress bar
# total_items = len(embedding_matrix)
# for i, similar_items in enumerate(
# progress.tqdm(results, desc="Processing duplicates", total=total_items)
# ):
# if i not in deduplicated_indices:
# continue
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
# for sim_idx in similar_indices:
# if sim_idx in deduplicated_indices:
# deduplicated_indices.remove(sim_idx)
# duplicate_to_original_mapping[sim_idx] = i
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
# def display_word_differences(x: str, y: str) -> str:
# diff = ndiff(x.split(), y.split())
# return " ".join([word for word in diff if word.startswith(("+", "-"))])
# def encode_texts(texts, progress=None):
# embedding_matrix = model.encode(texts, show_progressbar=False)
# return embedding_matrix
# def perform_deduplication(
# deduplication_type,
# dataset1_name,
# dataset1_split,
# dataset1_text_column,
# dataset2_name="",
# dataset2_split="",
# dataset2_text_column="",
# threshold=default_threshold,
# progress=gr.Progress(track_tqdm=True),
# ):
# try:
# # Convert threshold to float
# threshold = float(threshold)
# # Initialize status message
# status = ""
# if deduplication_type == "Single dataset":
# # Load Dataset 1
# status = "Loading Dataset 1..."
# yield status, ""
# if (
# dataset1_name == default_dataset1_name
# and dataset1_split == default_dataset1_split
# ):
# ds = ds_default1
# else:
# ds = load_dataset(dataset1_name, split=dataset1_split)
# # Extract texts
# status = "Extracting texts from Dataset 1..."
# yield status, ""
# texts = [example[dataset1_text_column] for example in ds]
# # Compute embeddings
# status = "Computing embeddings for Dataset 1..."
# yield status, ""
# embedding_matrix = encode_texts(texts, progress=progress)
# #embedding_matrix = model.encode(texts, show_progressbar=True)
# # embedding_matrix = compute_embeddings(
# # texts,
# # batch_size=64,
# # progress=progress,
# # desc="Computing embeddings for Dataset 1",
# # )
# # Deduplicate
# status = "Deduplicating embeddings..."
# yield status, ""
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(
# embedding_matrix, threshold, progress=progress
# )
# # Prepare the results
# num_duplicates = len(duplicate_to_original_mapping)
# num_total = len(texts)
# num_deduplicated = len(deduplicated_indices)
# result_text = f"**Total documents:** {num_total}\n"
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
# result_text += (
# f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
# )
# # Show deduplicated examples
# if num_duplicates > 0:
# result_text += "**Examples of duplicates found:**\n\n"
# num_examples = min(5, num_duplicates)
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
# original_text = texts[original_idx]
# duplicate_text = texts[duplicate_idx]
# differences = display_word_differences(original_text, duplicate_text)
# result_text += f"**Original text:**\n{original_text}\n\n"
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
# result_text += f"**Differences:**\n{differences}\n"
# result_text += "-" * 50 + "\n\n"
# else:
# result_text += "No duplicates found."
# # Final status
# status = "Deduplication completed."
# yield status, result_text
# elif deduplication_type == "Cross-dataset":
# # Similar code for cross-dataset deduplication
# # Load Dataset 1
# status = "Loading Dataset 1..."
# yield status, ""
# if (
# dataset1_name == default_dataset1_name
# and dataset1_split == default_dataset1_split
# ):
# ds1 = ds_default1
# else:
# ds1 = load_dataset(dataset1_name, split=dataset1_split)
# # Load Dataset 2
# status = "Loading Dataset 2..."
# yield status, ""
# if (
# dataset2_name == default_dataset2_name
# and dataset2_split == default_dataset2_split
# ):
# ds2 = ds_default2
# else:
# ds2 = load_dataset(dataset2_name, split=dataset2_split)
# # Extract texts from Dataset 1
# status = "Extracting texts from Dataset 1..."
# yield status, ""
# texts1 = [example[dataset1_text_column] for example in ds1]
# # Extract texts from Dataset 2
# status = "Extracting texts from Dataset 2..."
# yield status, ""
# texts2 = [example[dataset2_text_column] for example in ds2]
# # Compute embeddings for Dataset 1
# status = "Computing embeddings for Dataset 1..."
# yield status, ""
# embedding_matrix1 = compute_embeddings(
# texts1,
# batch_size=64,
# progress=progress,
# desc="Computing embeddings for Dataset 1",
# )
# # Compute embeddings for Dataset 2
# status = "Computing embeddings for Dataset 2..."
# yield status, ""
# embedding_matrix2 = compute_embeddings(
# texts2,
# batch_size=64,
# progress=progress,
# desc="Computing embeddings for Dataset 2",
# )
# # Deduplicate across datasets
# status = "Deduplicating embeddings across datasets..."
# yield status, ""
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
# embedding_matrix1, embedding_matrix2, threshold, progress=progress
# )
# num_duplicates = len(duplicate_indices_in_ds2)
# num_total_ds2 = len(texts2)
# num_unique_ds2 = num_total_ds2 - num_duplicates
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
# # Show deduplicated examples
# if num_duplicates > 0:
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
# num_examples = min(5, num_duplicates)
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
# original_idx = duplicate_to_original_mapping[duplicate_idx]
# original_text = texts1[original_idx]
# duplicate_text = texts2[duplicate_idx]
# differences = display_word_differences(original_text, duplicate_text)
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
# result_text += f"**Differences:**\n{differences}\n"
# result_text += "-" * 50 + "\n\n"
# else:
# result_text += "No duplicates found."
# # Final status
# status = "Deduplication completed."
# yield status, result_text
# except Exception as e:
# yield f"An error occurred: {e}", ""
# raise e
# def deduplicate_across_datasets(
# embedding_matrix_1: np.ndarray,
# embedding_matrix_2: np.ndarray,
# threshold: float,
# batch_size: int = 1024,
# progress=None
# ) -> tuple[list[int], dict[int, int]]:
# # Building the index from Dataset 1
# progress(0, desc="Building search index from Dataset 1...")
# reach = Reach(
# vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
# )
# duplicate_indices_in_test = []
# duplicate_to_original_mapping = {}
# # Finding nearest neighbors between datasets
# progress(0, desc="Finding nearest neighbors between datasets...")
# results = reach.nearest_neighbor_threshold(
# embedding_matrix_2,
# threshold=threshold,
# batch_size=batch_size,
# show_progressbar=False, # Disable internal progress bar
# )
# total_items = len(embedding_matrix_2)
# # Processing duplicates with a progress bar
# for i, similar_items in enumerate(
# progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
# ):
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
# if similar_indices:
# duplicate_indices_in_test.append(i)
# duplicate_to_original_mapping[i] = similar_indices[0]
# return duplicate_indices_in_test, duplicate_to_original_mapping
# # Adjust the height of the status_output component using custom CSS
# with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
# gr.Markdown("# Semantic Deduplication")
# deduplication_type = gr.Radio(
# choices=["Single dataset", "Cross-dataset"],
# label="Deduplication Type",
# value="Single dataset",
# )
# with gr.Row():
# dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
# dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# dataset2_inputs = gr.Column(visible=False)
# with dataset2_inputs:
# gr.Markdown("### Dataset 2")
# with gr.Row():
# dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
# dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# threshold = gr.Slider(
# minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
# )
# compute_button = gr.Button("Compute")
# # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
# status_output = gr.Markdown(elem_id="status_output")
# result_output = gr.Markdown()
# # Function to update the visibility of dataset2_inputs
# def update_visibility(deduplication_type_value):
# if deduplication_type_value == "Cross-dataset":
# return gr.update(visible=True)
# else:
# return gr.update(visible=False)
# deduplication_type.change(
# update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
# )
# compute_button.click(
# fn=perform_deduplication,
# inputs=[
# deduplication_type,
# dataset1_name,
# dataset1_split,
# dataset1_text_column,
# dataset2_name,
# dataset2_split,
# dataset2_text_column,
# threshold,
# ],
# outputs=[status_output, result_output],
# )
# demo.launch()