import gradio as gr | |
from datasets import load_dataset | |
import numpy as np | |
import model2vec | |
from reach import Reach | |
from difflib import ndiff | |
import time | |
# Load the model at startup | |
model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output") | |
# Default dataset parameters | |
default_dataset1_name = "sst2" | |
default_dataset1_split = "train" | |
default_dataset2_name = "sst2" | |
default_dataset2_split = "validation" | |
default_text_column = "sentence" | |
default_threshold = 0.9 | |
# Load the default datasets at startup | |
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split) | |
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split) | |
def batch_iterable(iterable, batch_size): | |
"""Helper function to create batches from an iterable.""" | |
for i in range(0, len(iterable), batch_size): | |
yield iterable[i:i + batch_size] | |
def log_time(message, start_time=None, logs=None): | |
"""Helper function to log the start and end times.""" | |
current_time = time.time() | |
if start_time is not None: | |
elapsed = current_time - start_time | |
log_message = f"{message} - Took {elapsed:.2f} seconds" | |
else: | |
log_message = f"{message} - Started" | |
if logs is not None: | |
logs.append(log_message) | |
def compute_embeddings(texts, batch_size, progress, logs, desc="Computing embeddings"): | |
embeddings = [] | |
total_batches = (len(texts) + batch_size - 1) // batch_size | |
for i, batch_texts in enumerate(batch_iterable(texts, batch_size)): | |
batch_embeddings = model.encode(batch_texts, show_progressbar=False) | |
embeddings.append(batch_embeddings) | |
progress((i + 1) / total_batches, desc=desc) | |
return np.concatenate(embeddings, axis=0) | |
def deduplicate( | |
embedding_matrix: np.ndarray, | |
threshold: float, | |
batch_size: int = 1024, | |
progress=None, | |
logs=None | |
) -> tuple[np.ndarray, dict[int, int]]: | |
# Building the index | |
log_time("Building search index", logs=logs) | |
reach = Reach( | |
vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))] | |
) | |
deduplicated_indices = set(range(len(embedding_matrix))) | |
duplicate_to_original_mapping = {} | |
# Finding nearest neighbors | |
log_time("Finding nearest neighbors", logs=logs) | |
results = reach.nearest_neighbor_threshold( | |
embedding_matrix, | |
threshold=threshold, | |
batch_size=batch_size, | |
show_progressbar=False, # Disable internal progress bar | |
) | |
# Processing duplicates with a progress bar | |
total_items = len(embedding_matrix) | |
log_time("Processing duplicates", logs=logs) | |
for i, similar_items in enumerate( | |
progress.tqdm(results, desc="Processing duplicates", total=total_items) | |
): | |
if i not in deduplicated_indices: | |
continue | |
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i] | |
for sim_idx in similar_indices: | |
if sim_idx in deduplicated_indices: | |
deduplicated_indices.remove(sim_idx) | |
duplicate_to_original_mapping[sim_idx] = i | |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping | |
def display_word_differences(x: str, y: str) -> str: | |
diff = ndiff(x.split(), y.split()) | |
return " ".join([word for word in diff if word.startswith(("+", "-"))]) | |
def encode_texts(texts, progress=None, logs=None): | |
embedding_matrix = model.encode(texts, show_progressbar=False) | |
log_time("Encoding texts completed", logs=logs) | |
return embedding_matrix | |
def perform_deduplication( | |
deduplication_type, | |
dataset1_name, | |
dataset1_split, | |
dataset1_text_column, | |
dataset2_name="", | |
dataset2_split="", | |
dataset2_text_column="", | |
threshold=default_threshold, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
logs = [] # To store log messages | |
try: | |
# Convert threshold to float | |
threshold = float(threshold) | |
# Initialize status message | |
log_time("Deduplication started", logs=logs) | |
if deduplication_type == "Single dataset": | |
# Load Dataset 1 | |
start_time = time.time() | |
log_time("Loading Dataset 1", logs=logs) | |
if ( | |
dataset1_name == default_dataset1_name | |
and dataset1_split == default_dataset1_split | |
): | |
ds = ds_default1 | |
else: | |
ds = load_dataset(dataset1_name, split=dataset1_split) | |
log_time("Loading Dataset 1 completed", start_time=start_time, logs=logs) | |
# Extract texts | |
start_time = time.time() | |
log_time("Extracting texts from Dataset 1", logs=logs) | |
texts = [example[dataset1_text_column] for example in ds] | |
log_time("Extracting texts from Dataset 1 completed", start_time=start_time, logs=logs) | |
# Compute embeddings | |
start_time = time.time() | |
log_time("Computing embeddings for Dataset 1", logs=logs) | |
embedding_matrix = encode_texts(texts, progress=progress, logs=logs) | |
log_time("Computing embeddings for Dataset 1 completed", start_time=start_time, logs=logs) | |
# Deduplicate | |
start_time = time.time() | |
log_time("Deduplicating embeddings", logs=logs) | |
deduplicated_indices, duplicate_to_original_mapping = deduplicate( | |
embedding_matrix, threshold, progress=progress, logs=logs | |
) | |
log_time("Deduplication completed", start_time=start_time, logs=logs) | |
# Prepare the results | |
num_duplicates = len(duplicate_to_original_mapping) | |
num_total = len(texts) | |
num_deduplicated = len(deduplicated_indices) | |
result_text = f"**Total documents:** {num_total}\n" | |
result_text += f"**Number of duplicates found:** {num_duplicates}\n" | |
result_text += ( | |
f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n" | |
) | |
# Show deduplicated examples | |
if num_duplicates > 0: | |
result_text += "**Examples of duplicates found:**\n\n" | |
num_examples = min(5, num_duplicates) | |
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]: | |
original_text = texts[original_idx] | |
duplicate_text = texts[duplicate_idx] | |
differences = display_word_differences(original_text, duplicate_text) | |
result_text += f"**Original text:**\n{original_text}\n\n" | |
result_text += f"**Duplicate text:**\n{duplicate_text}\n\n" | |
result_text += f"**Differences:**\n{differences}\n" | |
result_text += "-" * 50 + "\n\n" | |
else: | |
result_text += "No duplicates found." | |
log_time("Deduplication process finished", logs=logs) | |
full_log = "\n".join(logs) # Combine all logs into one output | |
yield full_log, result_text | |
except Exception as e: | |
full_log = "\n".join(logs) # Combine all logs into one output in case of an error | |
yield f"An error occurred: {e}", "" | |
raise e | |
# Adjust the height of the status_output component using custom CSS | |
with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo: | |
gr.Markdown("# Semantic Deduplication") | |
deduplication_type = gr.Radio( | |
choices=["Single dataset", "Cross-dataset"], | |
label="Deduplication Type", | |
value="Single dataset", | |
) | |
with gr.Row(): | |
dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name") | |
dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split") | |
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name") | |
dataset2_inputs = gr.Column(visible=False) | |
with dataset2_inputs: | |
gr.Markdown("### Dataset 2") | |
with gr.Row(): | |
dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name") | |
dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split") | |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name") | |
threshold = gr.Slider( | |
minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold" | |
) | |
compute_button = gr.Button("Compute") | |
# Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height | |
status_output = gr.Markdown(elem_id="status_output") | |
result_output = gr.Markdown() | |
# Function to update the visibility of dataset2_inputs | |
def update_visibility(deduplication_type_value): | |
if deduplication_type_value == "Cross-dataset": | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
deduplication_type.change( | |
update_visibility, inputs=deduplication_type, outputs=dataset2_inputs | |
) | |
compute_button.click( | |
fn=perform_deduplication, | |
inputs=[ | |
deduplication_type, | |
dataset1_name, | |
dataset1_split, | |
dataset1_text_column, | |
dataset2_name, | |
dataset2_split, | |
dataset2_text_column, | |
threshold, | |
], | |
outputs=[status_output, result_output], | |
) | |
demo.launch() | |
# import gradio as gr | |
# from datasets import load_dataset | |
# import numpy as np | |
# #from model2vec import StaticModel | |
# import model2vec | |
# from reach import Reach | |
# from difflib import ndiff | |
# # Load the model at startup | |
# model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output") | |
# # Default dataset parameters | |
# default_dataset1_name = "sst2" | |
# default_dataset1_split = "train" | |
# default_dataset2_name = "sst2" | |
# default_dataset2_split = "validation" | |
# default_text_column = "sentence" | |
# default_threshold = 0.9 | |
# # Load the default datasets at startup | |
# ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split) | |
# ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split) | |
# def batch_iterable(iterable, batch_size): | |
# """Helper function to create batches from an iterable.""" | |
# for i in range(0, len(iterable), batch_size): | |
# yield iterable[i:i + batch_size] | |
# def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"): | |
# embeddings = [] | |
# total_batches = (len(texts) + batch_size - 1) // batch_size | |
# for i, batch_texts in enumerate(batch_iterable(texts, batch_size)): | |
# batch_embeddings = model.encode(batch_texts, show_progressbar=False) | |
# embeddings.append(batch_embeddings) | |
# progress((i + 1) / total_batches, desc=desc) | |
# return np.concatenate(embeddings, axis=0) | |
# def deduplicate( | |
# embedding_matrix: np.ndarray, | |
# threshold: float, | |
# batch_size: int = 1024, | |
# progress=None | |
# ) -> tuple[np.ndarray, dict[int, int]]: | |
# # Building the index | |
# progress(0, desc="Building search index...") | |
# reach = Reach( | |
# vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))] | |
# ) | |
# deduplicated_indices = set(range(len(embedding_matrix))) | |
# duplicate_to_original_mapping = {} | |
# # Finding nearest neighbors | |
# progress(0, desc="Finding nearest neighbors...") | |
# results = reach.nearest_neighbor_threshold( | |
# embedding_matrix, | |
# threshold=threshold, | |
# batch_size=batch_size, | |
# show_progressbar=False, # Disable internal progress bar | |
# ) | |
# # Processing duplicates with a progress bar | |
# total_items = len(embedding_matrix) | |
# for i, similar_items in enumerate( | |
# progress.tqdm(results, desc="Processing duplicates", total=total_items) | |
# ): | |
# if i not in deduplicated_indices: | |
# continue | |
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i] | |
# for sim_idx in similar_indices: | |
# if sim_idx in deduplicated_indices: | |
# deduplicated_indices.remove(sim_idx) | |
# duplicate_to_original_mapping[sim_idx] = i | |
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping | |
# def display_word_differences(x: str, y: str) -> str: | |
# diff = ndiff(x.split(), y.split()) | |
# return " ".join([word for word in diff if word.startswith(("+", "-"))]) | |
# def encode_texts(texts, progress=None): | |
# embedding_matrix = model.encode(texts, show_progressbar=False) | |
# return embedding_matrix | |
# def perform_deduplication( | |
# deduplication_type, | |
# dataset1_name, | |
# dataset1_split, | |
# dataset1_text_column, | |
# dataset2_name="", | |
# dataset2_split="", | |
# dataset2_text_column="", | |
# threshold=default_threshold, | |
# progress=gr.Progress(track_tqdm=True), | |
# ): | |
# try: | |
# # Convert threshold to float | |
# threshold = float(threshold) | |
# # Initialize status message | |
# status = "" | |
# if deduplication_type == "Single dataset": | |
# # Load Dataset 1 | |
# status = "Loading Dataset 1..." | |
# yield status, "" | |
# if ( | |
# dataset1_name == default_dataset1_name | |
# and dataset1_split == default_dataset1_split | |
# ): | |
# ds = ds_default1 | |
# else: | |
# ds = load_dataset(dataset1_name, split=dataset1_split) | |
# # Extract texts | |
# status = "Extracting texts from Dataset 1..." | |
# yield status, "" | |
# texts = [example[dataset1_text_column] for example in ds] | |
# # Compute embeddings | |
# status = "Computing embeddings for Dataset 1..." | |
# yield status, "" | |
# embedding_matrix = encode_texts(texts, progress=progress) | |
# #embedding_matrix = model.encode(texts, show_progressbar=True) | |
# # embedding_matrix = compute_embeddings( | |
# # texts, | |
# # batch_size=64, | |
# # progress=progress, | |
# # desc="Computing embeddings for Dataset 1", | |
# # ) | |
# # Deduplicate | |
# status = "Deduplicating embeddings..." | |
# yield status, "" | |
# deduplicated_indices, duplicate_to_original_mapping = deduplicate( | |
# embedding_matrix, threshold, progress=progress | |
# ) | |
# # Prepare the results | |
# num_duplicates = len(duplicate_to_original_mapping) | |
# num_total = len(texts) | |
# num_deduplicated = len(deduplicated_indices) | |
# result_text = f"**Total documents:** {num_total}\n" | |
# result_text += f"**Number of duplicates found:** {num_duplicates}\n" | |
# result_text += ( | |
# f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n" | |
# ) | |
# # Show deduplicated examples | |
# if num_duplicates > 0: | |
# result_text += "**Examples of duplicates found:**\n\n" | |
# num_examples = min(5, num_duplicates) | |
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]: | |
# original_text = texts[original_idx] | |
# duplicate_text = texts[duplicate_idx] | |
# differences = display_word_differences(original_text, duplicate_text) | |
# result_text += f"**Original text:**\n{original_text}\n\n" | |
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n" | |
# result_text += f"**Differences:**\n{differences}\n" | |
# result_text += "-" * 50 + "\n\n" | |
# else: | |
# result_text += "No duplicates found." | |
# # Final status | |
# status = "Deduplication completed." | |
# yield status, result_text | |
# elif deduplication_type == "Cross-dataset": | |
# # Similar code for cross-dataset deduplication | |
# # Load Dataset 1 | |
# status = "Loading Dataset 1..." | |
# yield status, "" | |
# if ( | |
# dataset1_name == default_dataset1_name | |
# and dataset1_split == default_dataset1_split | |
# ): | |
# ds1 = ds_default1 | |
# else: | |
# ds1 = load_dataset(dataset1_name, split=dataset1_split) | |
# # Load Dataset 2 | |
# status = "Loading Dataset 2..." | |
# yield status, "" | |
# if ( | |
# dataset2_name == default_dataset2_name | |
# and dataset2_split == default_dataset2_split | |
# ): | |
# ds2 = ds_default2 | |
# else: | |
# ds2 = load_dataset(dataset2_name, split=dataset2_split) | |
# # Extract texts from Dataset 1 | |
# status = "Extracting texts from Dataset 1..." | |
# yield status, "" | |
# texts1 = [example[dataset1_text_column] for example in ds1] | |
# # Extract texts from Dataset 2 | |
# status = "Extracting texts from Dataset 2..." | |
# yield status, "" | |
# texts2 = [example[dataset2_text_column] for example in ds2] | |
# # Compute embeddings for Dataset 1 | |
# status = "Computing embeddings for Dataset 1..." | |
# yield status, "" | |
# embedding_matrix1 = compute_embeddings( | |
# texts1, | |
# batch_size=64, | |
# progress=progress, | |
# desc="Computing embeddings for Dataset 1", | |
# ) | |
# # Compute embeddings for Dataset 2 | |
# status = "Computing embeddings for Dataset 2..." | |
# yield status, "" | |
# embedding_matrix2 = compute_embeddings( | |
# texts2, | |
# batch_size=64, | |
# progress=progress, | |
# desc="Computing embeddings for Dataset 2", | |
# ) | |
# # Deduplicate across datasets | |
# status = "Deduplicating embeddings across datasets..." | |
# yield status, "" | |
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets( | |
# embedding_matrix1, embedding_matrix2, threshold, progress=progress | |
# ) | |
# num_duplicates = len(duplicate_indices_in_ds2) | |
# num_total_ds2 = len(texts2) | |
# num_unique_ds2 = num_total_ds2 - num_duplicates | |
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n" | |
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n" | |
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n" | |
# # Show deduplicated examples | |
# if num_duplicates > 0: | |
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n" | |
# num_examples = min(5, num_duplicates) | |
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]: | |
# original_idx = duplicate_to_original_mapping[duplicate_idx] | |
# original_text = texts1[original_idx] | |
# duplicate_text = texts2[duplicate_idx] | |
# differences = display_word_differences(original_text, duplicate_text) | |
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n" | |
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n" | |
# result_text += f"**Differences:**\n{differences}\n" | |
# result_text += "-" * 50 + "\n\n" | |
# else: | |
# result_text += "No duplicates found." | |
# # Final status | |
# status = "Deduplication completed." | |
# yield status, result_text | |
# except Exception as e: | |
# yield f"An error occurred: {e}", "" | |
# raise e | |
# def deduplicate_across_datasets( | |
# embedding_matrix_1: np.ndarray, | |
# embedding_matrix_2: np.ndarray, | |
# threshold: float, | |
# batch_size: int = 1024, | |
# progress=None | |
# ) -> tuple[list[int], dict[int, int]]: | |
# # Building the index from Dataset 1 | |
# progress(0, desc="Building search index from Dataset 1...") | |
# reach = Reach( | |
# vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))] | |
# ) | |
# duplicate_indices_in_test = [] | |
# duplicate_to_original_mapping = {} | |
# # Finding nearest neighbors between datasets | |
# progress(0, desc="Finding nearest neighbors between datasets...") | |
# results = reach.nearest_neighbor_threshold( | |
# embedding_matrix_2, | |
# threshold=threshold, | |
# batch_size=batch_size, | |
# show_progressbar=False, # Disable internal progress bar | |
# ) | |
# total_items = len(embedding_matrix_2) | |
# # Processing duplicates with a progress bar | |
# for i, similar_items in enumerate( | |
# progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items) | |
# ): | |
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold] | |
# if similar_indices: | |
# duplicate_indices_in_test.append(i) | |
# duplicate_to_original_mapping[i] = similar_indices[0] | |
# return duplicate_indices_in_test, duplicate_to_original_mapping | |
# # Adjust the height of the status_output component using custom CSS | |
# with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo: | |
# gr.Markdown("# Semantic Deduplication") | |
# deduplication_type = gr.Radio( | |
# choices=["Single dataset", "Cross-dataset"], | |
# label="Deduplication Type", | |
# value="Single dataset", | |
# ) | |
# with gr.Row(): | |
# dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name") | |
# dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split") | |
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name") | |
# dataset2_inputs = gr.Column(visible=False) | |
# with dataset2_inputs: | |
# gr.Markdown("### Dataset 2") | |
# with gr.Row(): | |
# dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name") | |
# dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split") | |
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name") | |
# threshold = gr.Slider( | |
# minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold" | |
# ) | |
# compute_button = gr.Button("Compute") | |
# # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height | |
# status_output = gr.Markdown(elem_id="status_output") | |
# result_output = gr.Markdown() | |
# # Function to update the visibility of dataset2_inputs | |
# def update_visibility(deduplication_type_value): | |
# if deduplication_type_value == "Cross-dataset": | |
# return gr.update(visible=True) | |
# else: | |
# return gr.update(visible=False) | |
# deduplication_type.change( | |
# update_visibility, inputs=deduplication_type, outputs=dataset2_inputs | |
# ) | |
# compute_button.click( | |
# fn=perform_deduplication, | |
# inputs=[ | |
# deduplication_type, | |
# dataset1_name, | |
# dataset1_split, | |
# dataset1_text_column, | |
# dataset2_name, | |
# dataset2_split, | |
# dataset2_text_column, | |
# threshold, | |
# ], | |
# outputs=[status_output, result_output], | |
# ) | |
# demo.launch() | |