Updates
Browse files
app.py
CHANGED
@@ -26,15 +26,19 @@ def batch_iterable(iterable, batch_size):
|
|
26 |
for i in range(0, len(iterable), batch_size):
|
27 |
yield iterable[i:i + batch_size]
|
28 |
|
29 |
-
def log_time(message, start_time=None):
|
30 |
"""Helper function to log the start and end times."""
|
31 |
current_time = time.time()
|
32 |
if start_time is not None:
|
33 |
elapsed = current_time - start_time
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
embeddings = []
|
39 |
total_batches = (len(texts) + batch_size - 1) // batch_size
|
40 |
for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
@@ -47,10 +51,11 @@ def deduplicate(
|
|
47 |
embedding_matrix: np.ndarray,
|
48 |
threshold: float,
|
49 |
batch_size: int = 1024,
|
50 |
-
progress=None
|
|
|
51 |
) -> tuple[np.ndarray, dict[int, int]]:
|
52 |
# Building the index
|
53 |
-
|
54 |
reach = Reach(
|
55 |
vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
56 |
)
|
@@ -59,7 +64,7 @@ def deduplicate(
|
|
59 |
duplicate_to_original_mapping = {}
|
60 |
|
61 |
# Finding nearest neighbors
|
62 |
-
|
63 |
results = reach.nearest_neighbor_threshold(
|
64 |
embedding_matrix,
|
65 |
threshold=threshold,
|
@@ -69,6 +74,7 @@ def deduplicate(
|
|
69 |
|
70 |
# Processing duplicates with a progress bar
|
71 |
total_items = len(embedding_matrix)
|
|
|
72 |
for i, similar_items in enumerate(
|
73 |
progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
74 |
):
|
@@ -88,8 +94,9 @@ def display_word_differences(x: str, y: str) -> str:
|
|
88 |
diff = ndiff(x.split(), y.split())
|
89 |
return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
90 |
|
91 |
-
def encode_texts(texts, progress=None):
|
92 |
embedding_matrix = model.encode(texts, show_progressbar=False)
|
|
|
93 |
return embedding_matrix
|
94 |
|
95 |
def perform_deduplication(
|
@@ -103,18 +110,18 @@ def perform_deduplication(
|
|
103 |
threshold=default_threshold,
|
104 |
progress=gr.Progress(track_tqdm=True),
|
105 |
):
|
|
|
106 |
try:
|
107 |
# Convert threshold to float
|
108 |
threshold = float(threshold)
|
109 |
|
110 |
# Initialize status message
|
111 |
-
|
112 |
|
113 |
if deduplication_type == "Single dataset":
|
114 |
# Load Dataset 1
|
115 |
start_time = time.time()
|
116 |
-
|
117 |
-
yield status, ""
|
118 |
if (
|
119 |
dataset1_name == default_dataset1_name
|
120 |
and dataset1_split == default_dataset1_split
|
@@ -122,34 +129,27 @@ def perform_deduplication(
|
|
122 |
ds = ds_default1
|
123 |
else:
|
124 |
ds = load_dataset(dataset1_name, split=dataset1_split)
|
125 |
-
|
126 |
-
yield status, ""
|
127 |
|
128 |
# Extract texts
|
129 |
start_time = time.time()
|
130 |
-
|
131 |
-
yield status, ""
|
132 |
texts = [example[dataset1_text_column] for example in ds]
|
133 |
-
|
134 |
-
yield status, ""
|
135 |
|
136 |
# Compute embeddings
|
137 |
start_time = time.time()
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
status = log_time("Computing embeddings for Dataset 1 completed", start_time)
|
142 |
-
yield status, ""
|
143 |
|
144 |
# Deduplicate
|
145 |
start_time = time.time()
|
146 |
-
|
147 |
-
yield status, ""
|
148 |
deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
149 |
-
embedding_matrix, threshold, progress=progress
|
150 |
)
|
151 |
-
|
152 |
-
yield status, ""
|
153 |
|
154 |
# Prepare the results
|
155 |
num_duplicates = len(duplicate_to_original_mapping)
|
@@ -177,41 +177,12 @@ def perform_deduplication(
|
|
177 |
else:
|
178 |
result_text += "No duplicates found."
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
yield
|
183 |
-
|
184 |
-
elif deduplication_type == "Cross-dataset":
|
185 |
-
# Similar code for cross-dataset deduplication with time logging
|
186 |
-
start_time = time.time()
|
187 |
-
status = log_time("Loading Dataset 1")
|
188 |
-
yield status, ""
|
189 |
-
if (
|
190 |
-
dataset1_name == default_dataset1_name
|
191 |
-
and dataset1_split == default_dataset1_split
|
192 |
-
):
|
193 |
-
ds1 = ds_default1
|
194 |
-
else:
|
195 |
-
ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
196 |
-
status = log_time("Loading Dataset 1 completed", start_time)
|
197 |
-
yield status, ""
|
198 |
-
|
199 |
-
start_time = time.time()
|
200 |
-
status = log_time("Loading Dataset 2")
|
201 |
-
yield status, ""
|
202 |
-
if (
|
203 |
-
dataset2_name == default_dataset2_name
|
204 |
-
and dataset2_split == default_dataset2_split
|
205 |
-
):
|
206 |
-
ds2 = ds_default2
|
207 |
-
else:
|
208 |
-
ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
209 |
-
status = log_time("Loading Dataset 2 completed", start_time)
|
210 |
-
yield status, ""
|
211 |
-
|
212 |
-
# Similar time logging for embedding computations and deduplication steps
|
213 |
|
214 |
except Exception as e:
|
|
|
215 |
yield f"An error occurred: {e}", ""
|
216 |
raise e
|
217 |
|
@@ -276,6 +247,7 @@ with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
|
276 |
|
277 |
demo.launch()
|
278 |
|
|
|
279 |
# import gradio as gr
|
280 |
# from datasets import load_dataset
|
281 |
# import numpy as np
|
|
|
26 |
for i in range(0, len(iterable), batch_size):
|
27 |
yield iterable[i:i + batch_size]
|
28 |
|
29 |
+
def log_time(message, start_time=None, logs=None):
|
30 |
"""Helper function to log the start and end times."""
|
31 |
current_time = time.time()
|
32 |
if start_time is not None:
|
33 |
elapsed = current_time - start_time
|
34 |
+
log_message = f"{message} - Took {elapsed:.2f} seconds"
|
35 |
+
else:
|
36 |
+
log_message = f"{message} - Started"
|
37 |
+
|
38 |
+
if logs is not None:
|
39 |
+
logs.append(log_message)
|
40 |
+
|
41 |
+
def compute_embeddings(texts, batch_size, progress, logs, desc="Computing embeddings"):
|
42 |
embeddings = []
|
43 |
total_batches = (len(texts) + batch_size - 1) // batch_size
|
44 |
for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
|
|
51 |
embedding_matrix: np.ndarray,
|
52 |
threshold: float,
|
53 |
batch_size: int = 1024,
|
54 |
+
progress=None,
|
55 |
+
logs=None
|
56 |
) -> tuple[np.ndarray, dict[int, int]]:
|
57 |
# Building the index
|
58 |
+
log_time("Building search index", logs=logs)
|
59 |
reach = Reach(
|
60 |
vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
61 |
)
|
|
|
64 |
duplicate_to_original_mapping = {}
|
65 |
|
66 |
# Finding nearest neighbors
|
67 |
+
log_time("Finding nearest neighbors", logs=logs)
|
68 |
results = reach.nearest_neighbor_threshold(
|
69 |
embedding_matrix,
|
70 |
threshold=threshold,
|
|
|
74 |
|
75 |
# Processing duplicates with a progress bar
|
76 |
total_items = len(embedding_matrix)
|
77 |
+
log_time("Processing duplicates", logs=logs)
|
78 |
for i, similar_items in enumerate(
|
79 |
progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
80 |
):
|
|
|
94 |
diff = ndiff(x.split(), y.split())
|
95 |
return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
96 |
|
97 |
+
def encode_texts(texts, progress=None, logs=None):
|
98 |
embedding_matrix = model.encode(texts, show_progressbar=False)
|
99 |
+
log_time("Encoding texts completed", logs=logs)
|
100 |
return embedding_matrix
|
101 |
|
102 |
def perform_deduplication(
|
|
|
110 |
threshold=default_threshold,
|
111 |
progress=gr.Progress(track_tqdm=True),
|
112 |
):
|
113 |
+
logs = [] # To store log messages
|
114 |
try:
|
115 |
# Convert threshold to float
|
116 |
threshold = float(threshold)
|
117 |
|
118 |
# Initialize status message
|
119 |
+
log_time("Deduplication started", logs=logs)
|
120 |
|
121 |
if deduplication_type == "Single dataset":
|
122 |
# Load Dataset 1
|
123 |
start_time = time.time()
|
124 |
+
log_time("Loading Dataset 1", logs=logs)
|
|
|
125 |
if (
|
126 |
dataset1_name == default_dataset1_name
|
127 |
and dataset1_split == default_dataset1_split
|
|
|
129 |
ds = ds_default1
|
130 |
else:
|
131 |
ds = load_dataset(dataset1_name, split=dataset1_split)
|
132 |
+
log_time("Loading Dataset 1 completed", start_time=start_time, logs=logs)
|
|
|
133 |
|
134 |
# Extract texts
|
135 |
start_time = time.time()
|
136 |
+
log_time("Extracting texts from Dataset 1", logs=logs)
|
|
|
137 |
texts = [example[dataset1_text_column] for example in ds]
|
138 |
+
log_time("Extracting texts from Dataset 1 completed", start_time=start_time, logs=logs)
|
|
|
139 |
|
140 |
# Compute embeddings
|
141 |
start_time = time.time()
|
142 |
+
log_time("Computing embeddings for Dataset 1", logs=logs)
|
143 |
+
embedding_matrix = encode_texts(texts, progress=progress, logs=logs)
|
144 |
+
log_time("Computing embeddings for Dataset 1 completed", start_time=start_time, logs=logs)
|
|
|
|
|
145 |
|
146 |
# Deduplicate
|
147 |
start_time = time.time()
|
148 |
+
log_time("Deduplicating embeddings", logs=logs)
|
|
|
149 |
deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
150 |
+
embedding_matrix, threshold, progress=progress, logs=logs
|
151 |
)
|
152 |
+
log_time("Deduplication completed", start_time=start_time, logs=logs)
|
|
|
153 |
|
154 |
# Prepare the results
|
155 |
num_duplicates = len(duplicate_to_original_mapping)
|
|
|
177 |
else:
|
178 |
result_text += "No duplicates found."
|
179 |
|
180 |
+
log_time("Deduplication process finished", logs=logs)
|
181 |
+
full_log = "\n".join(logs) # Combine all logs into one output
|
182 |
+
yield full_log, result_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
except Exception as e:
|
185 |
+
full_log = "\n".join(logs) # Combine all logs into one output in case of an error
|
186 |
yield f"An error occurred: {e}", ""
|
187 |
raise e
|
188 |
|
|
|
247 |
|
248 |
demo.launch()
|
249 |
|
250 |
+
|
251 |
# import gradio as gr
|
252 |
# from datasets import load_dataset
|
253 |
# import numpy as np
|