Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchsummary import summary | |
# imports | |
import os | |
import torch | |
from pytorch_lightning import LightningModule, Trainer | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader, random_split | |
from torchmetrics import Accuracy | |
from torchvision import transforms | |
from torchvision.datasets import CIFAR10 | |
from torch_lr_finder import LRFinder | |
import math | |
import torch | |
from torch.utils.data import DataLoader, random_split | |
import torchvision.transforms as transforms | |
import torchvision.datasets as datasets | |
import pytorch_lightning as pl | |
import matplotlib.pyplot as plt | |
PATH_DATASETS = os.environ.get("PATH_DATASETS", ".") | |
BATCH_SIZE = 256 | |
# Model | |
class custom_ResNet(pl.LightningModule): | |
def __init__(self, data_dir=PATH_DATASETS, learning_rate=2e-4): | |
super(custom_ResNet, self).__init__() | |
# Set our init args as class attributes | |
# Hardcode some dataset specific attributes | |
self.data_dir = data_dir | |
self.learning_rate = learning_rate | |
self.classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] | |
self.num_classes = 10 | |
self.train_transform = transforms.Compose([ | |
transforms.RandomCrop(32, padding=4), | |
transforms.RandomHorizontalFlip(), | |
transforms.ToTensor(), # Convert PIL image to tensor | |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)) | |
]) | |
self.test_transform = transforms.Compose([ | |
transforms.ToTensor(), # Convert PIL image to tensor | |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)) | |
]) | |
# Define PyTorch model | |
# PREPARATION BLOCK | |
self.prepblock = nn.Sequential( | |
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False), | |
nn.ReLU(),nn.BatchNorm2d(64)) | |
# output_size = 32, RF=3 | |
# CONVOLUTION BLOCK 1 | |
self.convblock1_l1 = nn.Sequential( | |
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False), | |
# output_size = 32, RF=5 | |
nn.MaxPool2d(2, 2),nn.ReLU(),nn.BatchNorm2d(128)) | |
# output_size = 16, RF=6 | |
self.convblock1_r1 = nn.Sequential( | |
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False), | |
nn.ReLU(),nn.BatchNorm2d(128), | |
# output_size = 16, RF=10 | |
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False), | |
nn.ReLU(),nn.BatchNorm2d(128)) | |
# output_size = 16, RF=14 | |
# CONVOLUTION BLOCK 2 | |
self.convblock2_l1 = nn.Sequential( | |
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False), | |
# output_size = 16, RF=18 | |
nn.MaxPool2d(2, 2),nn.ReLU(),nn.BatchNorm2d(256)) | |
# output_size = 8, RF=20 | |
# CONVOLUTION BLOCK 3 | |
self.convblock3_l1 = nn.Sequential( | |
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False), | |
# output_size = 8, RF=28 | |
nn.MaxPool2d(2, 2), | |
nn.ReLU(),nn.BatchNorm2d(512)) | |
# output_size = 4, RF=32 | |
self.convblock3_r2 = nn.Sequential( | |
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False), | |
nn.ReLU(),nn.BatchNorm2d(512), | |
# output_size = 4, RF=48 | |
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False), | |
nn.ReLU(),nn.BatchNorm2d(512)) | |
# output_size = 4, RF=64 | |
# CONVOLUTION BLOCK 4 | |
self.convblock4_mp = nn.Sequential(nn.MaxPool2d(4)) | |
# output_size = 1, RF = 88 | |
# OUTPUT BLOCK - Fully Connected layer | |
self.output_block = nn.Sequential(nn.Linear(in_features=512, out_features=10, bias=False)) | |
# output_size = 1, RF = 88 | |
def forward(self, x): | |
# Preparation Block | |
x1 = self.prepblock(x) | |
# Convolution Block 1 | |
x2 = self.convblock1_l1(x1) | |
x3 = self.convblock1_r1(x2) | |
x4 = x2 + x3 | |
# Convolution Block 2 | |
x5 = self.convblock2_l1(x4) | |
# Convolution Block 3 | |
x6 = self.convblock3_l1(x5) | |
x7 = self.convblock3_r2(x6) | |
x8 = x7 + x6 | |
# Convolution Block 4 | |
x9 = self.convblock4_mp(x8) | |
# Output Block | |
x9 = x9.view(x9.size(0), -1) | |
x10 = self.output_block(x9) | |
return F.log_softmax(x10, dim=1) | |
def training_step(self, batch, batch_idx): | |
x, y = batch | |
y_hat = self.forward(x) | |
loss = F.cross_entropy(y_hat, y) | |
pred = y_hat.argmax(dim=1, keepdim=True) | |
acc = pred.eq(y.view_as(pred)).float().mean() | |
self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True) | |
self.log('train_acc', acc, on_step=True, on_epoch=True, prog_bar=True) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
x, y = batch | |
y_hat = self.forward(x) | |
loss = F.cross_entropy(y_hat, y) | |
pred = y_hat.argmax(dim=1, keepdim=True) | |
acc = pred.eq(y.view_as(pred)).float().mean() | |
self.log('val_loss', loss, prog_bar=True) | |
self.log('val_acc', acc, prog_bar=True) | |
return loss | |
def test_step(self, batch, batch_idx): | |
x, y = batch | |
y_hat = self.forward(x) | |
loss = F.cross_entropy(y_hat, y) | |
pred = y_hat.argmax(dim=1, keepdim=True) | |
acc = pred.eq(y.view_as(pred)).float().mean() | |
self.log('test_loss', loss, prog_bar=True) | |
self.log('test_acc', acc, prog_bar=True) | |
return pred # Return predictions instead of loss | |
def configure_optimizers(self): | |
optimizer = torch.optim.Adam(self.parameters(), lr=0.001) | |
return optimizer | |
#################### | |
# DATA RELATED HOOKS | |
#################### | |
def prepare_data(self): | |
# download | |
CIFAR10(self.data_dir, train=True, download=True) | |
CIFAR10(self.data_dir, train=False, download=True) | |
def setup(self, stage=None): | |
# Assign train/val datasets for use in dataloaders | |
if stage == "fit" or stage is None: | |
cifar_full = CIFAR10(self.data_dir, train=True, transform=self.train_transform) | |
self.cifar_train, self.cifar_val = random_split(cifar_full, [45000, 5000]) | |
# Assign test dataset for use in dataloader(s) | |
if stage == "test" or stage is None: | |
self.cifar_test = CIFAR10(self.data_dir, train=False, transform=self.test_transform) | |
def train_dataloader(self): | |
return DataLoader(self.cifar_train, batch_size=BATCH_SIZE, num_workers=os.cpu_count()) | |
def val_dataloader(self): | |
return DataLoader(self.cifar_val, batch_size=BATCH_SIZE, num_workers=os.cpu_count()) | |
def test_dataloader(self): | |
return DataLoader(self.cifar_test, batch_size=BATCH_SIZE, num_workers=os.cpu_count()) | |
def collect_misclassified_images(self, num_images): | |
misclassified_images = [] | |
misclassified_true_labels = [] | |
misclassified_predicted_labels = [] | |
num_collected = 0 | |
for batch in self.test_dataloader(): | |
x, y = batch | |
pred = self.forward(x).argmax(dim=1, keepdim=True) | |
misclassified_mask = pred.eq(y.view_as(pred)).squeeze().cpu().numpy() | |
misclassified_images.extend(x[~misclassified_mask]) | |
misclassified_true_labels.extend(y[~misclassified_mask]) | |
misclassified_predicted_labels.extend(pred[~misclassified_mask]) | |
num_collected += sum(~misclassified_mask) | |
if num_collected >= num_images: | |
break | |
return misclassified_images[:num_images], misclassified_true_labels[:num_images], misclassified_predicted_labels[:num_images], len(misclassified_images) | |
def normalize_image(self, img_tensor): | |
min_val = img_tensor.min() | |
max_val = img_tensor.max() | |
return (img_tensor - min_val) / (max_val - min_val) | |
def show_misclassified_images(self, num_images=10): | |
misclassified_images, true_labels, predicted_labels, num_misclassified = self.collect_misclassified_images(num_images) | |
num_rows = 2 | |
num_cols = math.ceil(num_images / num_rows) | |
fig, axs = plt.subplots(num_rows, num_cols, figsize=(5 * num_cols, 5 * num_rows)) | |
fig.suptitle(f"Misclassified Images (Showing {num_images} out of {num_misclassified})") | |
plt.subplots_adjust(hspace=0.5) # Adjust vertical space between subplots | |
for i in range(num_images): | |
img = self.normalize_image(misclassified_images[i]).permute(1, 2, 0) | |
row_idx = i // num_cols | |
col_idx = i % num_cols | |
axs[row_idx, col_idx].imshow(img) | |
axs[row_idx, col_idx].set_title(f"True label: {self.classes[true_labels[i]]}\nPredicted: {self.classes[predicted_labels[i]]}") | |
axs[row_idx, col_idx].axis("off") | |
# Remove any empty subplots in the last row (when num_images is not divisible by num_rows) | |
for i in range(num_images, num_rows * num_cols): | |
row_idx = i // num_cols | |
col_idx = i % num_cols | |
axs[row_idx, col_idx].remove() | |
plt.show() |