File size: 13,534 Bytes
0f23291 2a7516c 0f23291 587e0bc a0c1c09 587e0bc a0c1c09 587e0bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import os
# Set HF_HOME for caching
os.environ["HF_HOME"] = "src/data_cache"
import streamlit as st
import pandas as pd
import altair as alt
from huggingface_hub import HfApi, hf_hub_download
import json
from pathlib import Path
from typing import Dict, List, Optional
import numpy as np
# Page config
st.set_page_config(
page_title="Grounding Benchmark Leaderboard",
page_icon="π―",
layout="wide"
)
# Constants
REPO_ID = "mlfoundations-cua-dev/leaderboard"
GROUNDING_PATH = "grounding"
# Baselines for different datasets
BASELINES = {
"screenspot-v2": {
"Qwen2-VL-7B": {
"desktop_text": 52.01,
"desktop_icon": 44.98,
"web_text": 33.04,
"web_icon": 21.84,
"overall": 37.96
},
"UI-TARS-2B": {
"desktop_text": 90.7,
"desktop_icon": 68.6,
"web_text": 87.2,
"web_icon": 84.7,
"overall": 82.8
},
"UI-TARS-7B": {
"desktop_text": 95.4,
"desktop_icon": 87.8,
"web_text": 93.8,
"web_icon": 91.6,
"overall": 92.2
},
"UI-TARS-72B": {
"desktop_text": 91.2,
"desktop_icon": 87.8,
"web_text": 87.7,
"web_icon": 86.3,
"overall": 88.3
}
}
}
@st.cache_data(ttl=300) # Cache for 5 minutes
def fetch_leaderboard_data():
"""Fetch all grounding results from HuggingFace leaderboard."""
api = HfApi()
try:
# List all files in the grounding directory
files = api.list_repo_files(repo_id=REPO_ID, repo_type="dataset")
grounding_files = [f for f in files if f.startswith(f"{GROUNDING_PATH}/") and f.endswith(".json")]
results = []
for file_path in grounding_files:
try:
# Download and parse each JSON file
local_path = hf_hub_download(
repo_id=REPO_ID,
filename=file_path,
repo_type="dataset"
)
with open(local_path, 'r') as f:
data = json.load(f)
# Extract key information
metadata = data.get("metadata", {})
metrics = data.get("metrics", {})
detailed_results = data.get("detailed_results", {})
# Parse the file path to get dataset and model info
path_parts = file_path.split('/')
dataset_name = path_parts[1] if len(path_parts) > 1 else "unknown"
# Get model name from metadata or path
model_name = metadata.get("model_checkpoint", "").split('/')[-1]
if not model_name and len(path_parts) > 2:
model_name = path_parts[2].replace("results_", "").replace(".json", "")
# Extract UI type results if available
ui_type_results = detailed_results.get("by_ui_type", {})
dataset_type_results = detailed_results.get("by_dataset_type", {})
results.append({
"dataset": dataset_name,
"model": model_name,
"model_path": metadata.get("model_checkpoint", ""),
"overall_accuracy": metrics.get("accuracy", 0) * 100, # Convert to percentage
"total_samples": metrics.get("total", 0),
"timestamp": metadata.get("evaluation_timestamp", ""),
"checkpoint_steps": metadata.get("checkpoint_steps"),
"training_loss": metadata.get("training_loss"),
"ui_type_results": ui_type_results,
"dataset_type_results": dataset_type_results,
"raw_data": data
})
except Exception as e:
st.warning(f"Error loading {file_path}: {str(e)}")
continue
return pd.DataFrame(results)
except Exception as e:
st.error(f"Error fetching leaderboard data: {str(e)}")
return pd.DataFrame()
def parse_ui_type_metrics(df: pd.DataFrame, dataset_filter: str) -> pd.DataFrame:
"""Parse UI type metrics from the results dataframe."""
metrics_list = []
for _, row in df.iterrows():
if row['dataset'] != dataset_filter:
continue
model = row['model']
ui_results = row['ui_type_results']
# For ScreenSpot datasets, we have desktop/web and text/icon
if 'screenspot' in dataset_filter.lower():
# Calculate aggregated metrics
desktop_text = ui_results.get('desktop_text', {}).get('correct', 0) / max(ui_results.get('desktop_text', {}).get('total', 1), 1) * 100
desktop_icon = ui_results.get('desktop_icon', {}).get('correct', 0) / max(ui_results.get('desktop_icon', {}).get('total', 1), 1) * 100
web_text = ui_results.get('web_text', {}).get('correct', 0) / max(ui_results.get('web_text', {}).get('total', 1), 1) * 100
web_icon = ui_results.get('web_icon', {}).get('correct', 0) / max(ui_results.get('web_icon', {}).get('total', 1), 1) * 100
# Calculate averages
desktop_avg = (desktop_text + desktop_icon) / 2 if desktop_text or desktop_icon else 0
web_avg = (web_text + web_icon) / 2 if web_text or web_icon else 0
text_avg = (desktop_text + web_text) / 2 if desktop_text or web_text else 0
icon_avg = (desktop_icon + web_icon) / 2 if desktop_icon or web_icon else 0
metrics_list.append({
'model': model,
'desktop_text': desktop_text,
'desktop_icon': desktop_icon,
'web_text': web_text,
'web_icon': web_icon,
'desktop_avg': desktop_avg,
'web_avg': web_avg,
'text_avg': text_avg,
'icon_avg': icon_avg,
'overall': row['overall_accuracy']
})
return pd.DataFrame(metrics_list)
def create_bar_chart(data: pd.DataFrame, metric: str, title: str):
"""Create a bar chart for a specific metric."""
# Prepare data for the chart
chart_data = []
# Add model results
for _, row in data.iterrows():
if metric in row and row[metric] > 0:
chart_data.append({
'Model': row['model'],
'Score': row[metric],
'Type': 'Evaluated'
})
# Add baselines if available
dataset = st.session_state.get('selected_dataset', '')
if dataset in BASELINES:
for baseline_name, baseline_metrics in BASELINES[dataset].items():
metric_key = metric.replace('_avg', '').replace('avg', 'overall')
if metric_key in baseline_metrics:
chart_data.append({
'Model': baseline_name,
'Score': baseline_metrics[metric_key],
'Type': 'Baseline'
})
if not chart_data:
return None
df_chart = pd.DataFrame(chart_data)
# Create the bar chart
chart = alt.Chart(df_chart).mark_bar().encode(
x=alt.X('Model:N',
sort=alt.EncodingSortField(field='Score', order='descending'),
axis=alt.Axis(labelAngle=-45)),
y=alt.Y('Score:Q',
scale=alt.Scale(domain=[0, 100]),
axis=alt.Axis(title='Score (%)')),
color=alt.Color('Type:N',
scale=alt.Scale(domain=['Evaluated', 'Baseline'],
range=['#4ECDC4', '#FFA726'])),
tooltip=['Model', 'Score', 'Type']
).properties(
title=title,
width=400,
height=300
)
# Add value labels
text = chart.mark_text(
align='center',
baseline='bottom',
dy=-5
).encode(
text=alt.Text('Score:Q', format='.1f')
)
return chart + text
def main():
st.title("π― Grounding Benchmark Leaderboard")
st.markdown("Visualization of model performance on grounding benchmarks")
# Fetch data
with st.spinner("Loading leaderboard data..."):
df = fetch_leaderboard_data()
if df.empty:
st.warning("No data available in the leaderboard.")
return
# Sidebar filters
st.sidebar.header("Filters")
# Dataset filter
datasets = sorted(df['dataset'].unique())
selected_dataset = st.sidebar.selectbox("Select Dataset", datasets)
st.session_state['selected_dataset'] = selected_dataset
# Filter data
filtered_df = df[df['dataset'] == selected_dataset]
# Model filter (optional)
models = ['All'] + sorted(filtered_df['model'].unique())
selected_model = st.sidebar.selectbox("Select Model", models)
if selected_model != 'All':
filtered_df = filtered_df[filtered_df['model'] == selected_model]
# Main content
st.header(f"Results for {selected_dataset}")
# Overall metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Models Evaluated", len(filtered_df))
with col2:
if not filtered_df.empty:
best_acc = filtered_df['overall_accuracy'].max()
best_model = filtered_df[filtered_df['overall_accuracy'] == best_acc]['model'].iloc[0]
st.metric("Best Overall Accuracy", f"{best_acc:.1f}%", help=f"Model: {best_model}")
with col3:
total_samples = filtered_df['total_samples'].sum()
st.metric("Total Samples Evaluated", f"{total_samples:,}")
# Parse UI type metrics
ui_metrics_df = parse_ui_type_metrics(filtered_df, selected_dataset)
if not ui_metrics_df.empty and 'screenspot' in selected_dataset.lower():
st.subheader("Performance by UI Type")
# Create charts in a grid
col1, col2 = st.columns(2)
with col1:
# Overall Average
chart = create_bar_chart(ui_metrics_df, 'overall', 'Overall Average')
if chart:
st.altair_chart(chart, use_container_width=True)
# Desktop Average
chart = create_bar_chart(ui_metrics_df, 'desktop_avg', 'Desktop Average')
if chart:
st.altair_chart(chart, use_container_width=True)
# Text Average
chart = create_bar_chart(ui_metrics_df, 'text_avg', 'Text Average (UI-Type)')
if chart:
st.altair_chart(chart, use_container_width=True)
with col2:
# Web Average
chart = create_bar_chart(ui_metrics_df, 'web_avg', 'Web Average')
if chart:
st.altair_chart(chart, use_container_width=True)
# Icon Average
chart = create_bar_chart(ui_metrics_df, 'icon_avg', 'Icon Average (UI-Type)')
if chart:
st.altair_chart(chart, use_container_width=True)
# Detailed breakdown
with st.expander("Detailed UI Type Breakdown"):
# Create a heatmap-style table
detailed_metrics = []
for _, row in ui_metrics_df.iterrows():
detailed_metrics.append({
'Model': row['model'],
'Desktop Text': f"{row['desktop_text']:.1f}%",
'Desktop Icon': f"{row['desktop_icon']:.1f}%",
'Web Text': f"{row['web_text']:.1f}%",
'Web Icon': f"{row['web_icon']:.1f}%",
'Overall': f"{row['overall']:.1f}%"
})
if detailed_metrics:
st.dataframe(pd.DataFrame(detailed_metrics), use_container_width=True)
else:
# For non-ScreenSpot datasets, show a simple bar chart
st.subheader("Model Performance")
chart_data = filtered_df[['model', 'overall_accuracy']].copy()
chart_data.columns = ['Model', 'Accuracy']
chart = alt.Chart(chart_data).mark_bar().encode(
x=alt.X('Model:N', sort='-y', axis=alt.Axis(labelAngle=-45)),
y=alt.Y('Accuracy:Q', scale=alt.Scale(domain=[0, 100])),
tooltip=['Model', 'Accuracy']
).properties(
width=800,
height=400
)
st.altair_chart(chart, use_container_width=True)
# Model details table
with st.expander("Model Details"):
display_df = filtered_df[['model', 'overall_accuracy', 'total_samples', 'checkpoint_steps', 'training_loss', 'timestamp']].copy()
display_df.columns = ['Model', 'Accuracy (%)', 'Samples', 'Checkpoint Steps', 'Training Loss', 'Timestamp']
display_df['Accuracy (%)'] = display_df['Accuracy (%)'].apply(lambda x: f"{x:.2f}")
display_df['Training Loss'] = display_df['Training Loss'].apply(lambda x: f"{x:.4f}" if pd.notna(x) else "N/A")
st.dataframe(display_df, use_container_width=True)
# Raw data viewer
with st.expander("Raw Data"):
if selected_model != 'All' and len(filtered_df) == 1:
st.json(filtered_df.iloc[0]['raw_data'])
else:
st.info("Select a specific model to view raw data")
if __name__ == "__main__":
main() |