File size: 13,534 Bytes
0f23291
 
2a7516c
0f23291
587e0bc
 
a0c1c09
587e0bc
 
 
 
a0c1c09
 
587e0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import os
# Set HF_HOME for caching
os.environ["HF_HOME"] = "src/data_cache"

import streamlit as st
import pandas as pd
import altair as alt
from huggingface_hub import HfApi, hf_hub_download
import json
from pathlib import Path
from typing import Dict, List, Optional
import numpy as np

# Page config
st.set_page_config(
    page_title="Grounding Benchmark Leaderboard",
    page_icon="🎯",
    layout="wide"
)

# Constants
REPO_ID = "mlfoundations-cua-dev/leaderboard"
GROUNDING_PATH = "grounding"

# Baselines for different datasets
BASELINES = {
    "screenspot-v2": {
        "Qwen2-VL-7B": {
            "desktop_text": 52.01,
            "desktop_icon": 44.98,
            "web_text": 33.04,
            "web_icon": 21.84,
            "overall": 37.96
        },
        "UI-TARS-2B": {
            "desktop_text": 90.7,
            "desktop_icon": 68.6,
            "web_text": 87.2,
            "web_icon": 84.7,
            "overall": 82.8
        },
        "UI-TARS-7B": {
            "desktop_text": 95.4,
            "desktop_icon": 87.8,
            "web_text": 93.8,
            "web_icon": 91.6,
            "overall": 92.2
        },
        "UI-TARS-72B": {
            "desktop_text": 91.2,
            "desktop_icon": 87.8,
            "web_text": 87.7,
            "web_icon": 86.3,
            "overall": 88.3
        }
    }
}

@st.cache_data(ttl=300)  # Cache for 5 minutes
def fetch_leaderboard_data():
    """Fetch all grounding results from HuggingFace leaderboard."""
    api = HfApi()
    
    try:
        # List all files in the grounding directory
        files = api.list_repo_files(repo_id=REPO_ID, repo_type="dataset")
        grounding_files = [f for f in files if f.startswith(f"{GROUNDING_PATH}/") and f.endswith(".json")]
        
        results = []
        for file_path in grounding_files:
            try:
                # Download and parse each JSON file
                local_path = hf_hub_download(
                    repo_id=REPO_ID,
                    filename=file_path,
                    repo_type="dataset"
                )
                
                with open(local_path, 'r') as f:
                    data = json.load(f)
                
                # Extract key information
                metadata = data.get("metadata", {})
                metrics = data.get("metrics", {})
                detailed_results = data.get("detailed_results", {})
                
                # Parse the file path to get dataset and model info
                path_parts = file_path.split('/')
                dataset_name = path_parts[1] if len(path_parts) > 1 else "unknown"
                
                # Get model name from metadata or path
                model_name = metadata.get("model_checkpoint", "").split('/')[-1]
                if not model_name and len(path_parts) > 2:
                    model_name = path_parts[2].replace("results_", "").replace(".json", "")
                
                # Extract UI type results if available
                ui_type_results = detailed_results.get("by_ui_type", {})
                dataset_type_results = detailed_results.get("by_dataset_type", {})
                
                results.append({
                    "dataset": dataset_name,
                    "model": model_name,
                    "model_path": metadata.get("model_checkpoint", ""),
                    "overall_accuracy": metrics.get("accuracy", 0) * 100,  # Convert to percentage
                    "total_samples": metrics.get("total", 0),
                    "timestamp": metadata.get("evaluation_timestamp", ""),
                    "checkpoint_steps": metadata.get("checkpoint_steps"),
                    "training_loss": metadata.get("training_loss"),
                    "ui_type_results": ui_type_results,
                    "dataset_type_results": dataset_type_results,
                    "raw_data": data
                })
                
            except Exception as e:
                st.warning(f"Error loading {file_path}: {str(e)}")
                continue
        
        return pd.DataFrame(results)
    
    except Exception as e:
        st.error(f"Error fetching leaderboard data: {str(e)}")
        return pd.DataFrame()

def parse_ui_type_metrics(df: pd.DataFrame, dataset_filter: str) -> pd.DataFrame:
    """Parse UI type metrics from the results dataframe."""
    metrics_list = []
    
    for _, row in df.iterrows():
        if row['dataset'] != dataset_filter:
            continue
            
        model = row['model']
        ui_results = row['ui_type_results']
        
        # For ScreenSpot datasets, we have desktop/web and text/icon
        if 'screenspot' in dataset_filter.lower():
            # Calculate aggregated metrics
            desktop_text = ui_results.get('desktop_text', {}).get('correct', 0) / max(ui_results.get('desktop_text', {}).get('total', 1), 1) * 100
            desktop_icon = ui_results.get('desktop_icon', {}).get('correct', 0) / max(ui_results.get('desktop_icon', {}).get('total', 1), 1) * 100
            web_text = ui_results.get('web_text', {}).get('correct', 0) / max(ui_results.get('web_text', {}).get('total', 1), 1) * 100
            web_icon = ui_results.get('web_icon', {}).get('correct', 0) / max(ui_results.get('web_icon', {}).get('total', 1), 1) * 100
            
            # Calculate averages
            desktop_avg = (desktop_text + desktop_icon) / 2 if desktop_text or desktop_icon else 0
            web_avg = (web_text + web_icon) / 2 if web_text or web_icon else 0
            text_avg = (desktop_text + web_text) / 2 if desktop_text or web_text else 0
            icon_avg = (desktop_icon + web_icon) / 2 if desktop_icon or web_icon else 0
            
            metrics_list.append({
                'model': model,
                'desktop_text': desktop_text,
                'desktop_icon': desktop_icon,
                'web_text': web_text,
                'web_icon': web_icon,
                'desktop_avg': desktop_avg,
                'web_avg': web_avg,
                'text_avg': text_avg,
                'icon_avg': icon_avg,
                'overall': row['overall_accuracy']
            })
    
    return pd.DataFrame(metrics_list)

def create_bar_chart(data: pd.DataFrame, metric: str, title: str):
    """Create a bar chart for a specific metric."""
    # Prepare data for the chart
    chart_data = []
    
    # Add model results
    for _, row in data.iterrows():
        if metric in row and row[metric] > 0:
            chart_data.append({
                'Model': row['model'],
                'Score': row[metric],
                'Type': 'Evaluated'
            })
    
    # Add baselines if available
    dataset = st.session_state.get('selected_dataset', '')
    if dataset in BASELINES:
        for baseline_name, baseline_metrics in BASELINES[dataset].items():
            metric_key = metric.replace('_avg', '').replace('avg', 'overall')
            if metric_key in baseline_metrics:
                chart_data.append({
                    'Model': baseline_name,
                    'Score': baseline_metrics[metric_key],
                    'Type': 'Baseline'
                })
    
    if not chart_data:
        return None
    
    df_chart = pd.DataFrame(chart_data)
    
    # Create the bar chart
    chart = alt.Chart(df_chart).mark_bar().encode(
        x=alt.X('Model:N', 
                sort=alt.EncodingSortField(field='Score', order='descending'),
                axis=alt.Axis(labelAngle=-45)),
        y=alt.Y('Score:Q', 
                scale=alt.Scale(domain=[0, 100]),
                axis=alt.Axis(title='Score (%)')),
        color=alt.Color('Type:N', 
                       scale=alt.Scale(domain=['Evaluated', 'Baseline'],
                                     range=['#4ECDC4', '#FFA726'])),
        tooltip=['Model', 'Score', 'Type']
    ).properties(
        title=title,
        width=400,
        height=300
    )
    
    # Add value labels
    text = chart.mark_text(
        align='center',
        baseline='bottom',
        dy=-5
    ).encode(
        text=alt.Text('Score:Q', format='.1f')
    )
    
    return chart + text

def main():
    st.title("🎯 Grounding Benchmark Leaderboard")
    st.markdown("Visualization of model performance on grounding benchmarks")
    
    # Fetch data
    with st.spinner("Loading leaderboard data..."):
        df = fetch_leaderboard_data()
    
    if df.empty:
        st.warning("No data available in the leaderboard.")
        return
    
    # Sidebar filters
    st.sidebar.header("Filters")
    
    # Dataset filter
    datasets = sorted(df['dataset'].unique())
    selected_dataset = st.sidebar.selectbox("Select Dataset", datasets)
    st.session_state['selected_dataset'] = selected_dataset
    
    # Filter data
    filtered_df = df[df['dataset'] == selected_dataset]
    
    # Model filter (optional)
    models = ['All'] + sorted(filtered_df['model'].unique())
    selected_model = st.sidebar.selectbox("Select Model", models)
    
    if selected_model != 'All':
        filtered_df = filtered_df[filtered_df['model'] == selected_model]
    
    # Main content
    st.header(f"Results for {selected_dataset}")
    
    # Overall metrics
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric("Models Evaluated", len(filtered_df))
    with col2:
        if not filtered_df.empty:
            best_acc = filtered_df['overall_accuracy'].max()
            best_model = filtered_df[filtered_df['overall_accuracy'] == best_acc]['model'].iloc[0]
            st.metric("Best Overall Accuracy", f"{best_acc:.1f}%", help=f"Model: {best_model}")
    with col3:
        total_samples = filtered_df['total_samples'].sum()
        st.metric("Total Samples Evaluated", f"{total_samples:,}")
    
    # Parse UI type metrics
    ui_metrics_df = parse_ui_type_metrics(filtered_df, selected_dataset)
    
    if not ui_metrics_df.empty and 'screenspot' in selected_dataset.lower():
        st.subheader("Performance by UI Type")
        
        # Create charts in a grid
        col1, col2 = st.columns(2)
        
        with col1:
            # Overall Average
            chart = create_bar_chart(ui_metrics_df, 'overall', 'Overall Average')
            if chart:
                st.altair_chart(chart, use_container_width=True)
            
            # Desktop Average
            chart = create_bar_chart(ui_metrics_df, 'desktop_avg', 'Desktop Average')
            if chart:
                st.altair_chart(chart, use_container_width=True)
            
            # Text Average
            chart = create_bar_chart(ui_metrics_df, 'text_avg', 'Text Average (UI-Type)')
            if chart:
                st.altair_chart(chart, use_container_width=True)
        
        with col2:
            # Web Average
            chart = create_bar_chart(ui_metrics_df, 'web_avg', 'Web Average')
            if chart:
                st.altair_chart(chart, use_container_width=True)
            
            # Icon Average
            chart = create_bar_chart(ui_metrics_df, 'icon_avg', 'Icon Average (UI-Type)')
            if chart:
                st.altair_chart(chart, use_container_width=True)
        
        # Detailed breakdown
        with st.expander("Detailed UI Type Breakdown"):
            # Create a heatmap-style table
            detailed_metrics = []
            for _, row in ui_metrics_df.iterrows():
                detailed_metrics.append({
                    'Model': row['model'],
                    'Desktop Text': f"{row['desktop_text']:.1f}%",
                    'Desktop Icon': f"{row['desktop_icon']:.1f}%",
                    'Web Text': f"{row['web_text']:.1f}%",
                    'Web Icon': f"{row['web_icon']:.1f}%",
                    'Overall': f"{row['overall']:.1f}%"
                })
            
            if detailed_metrics:
                st.dataframe(pd.DataFrame(detailed_metrics), use_container_width=True)
    
    else:
        # For non-ScreenSpot datasets, show a simple bar chart
        st.subheader("Model Performance")
        
        chart_data = filtered_df[['model', 'overall_accuracy']].copy()
        chart_data.columns = ['Model', 'Accuracy']
        
        chart = alt.Chart(chart_data).mark_bar().encode(
            x=alt.X('Model:N', sort='-y', axis=alt.Axis(labelAngle=-45)),
            y=alt.Y('Accuracy:Q', scale=alt.Scale(domain=[0, 100])),
            tooltip=['Model', 'Accuracy']
        ).properties(
            width=800,
            height=400
        )
        
        st.altair_chart(chart, use_container_width=True)
    
    # Model details table
    with st.expander("Model Details"):
        display_df = filtered_df[['model', 'overall_accuracy', 'total_samples', 'checkpoint_steps', 'training_loss', 'timestamp']].copy()
        display_df.columns = ['Model', 'Accuracy (%)', 'Samples', 'Checkpoint Steps', 'Training Loss', 'Timestamp']
        display_df['Accuracy (%)'] = display_df['Accuracy (%)'].apply(lambda x: f"{x:.2f}")
        display_df['Training Loss'] = display_df['Training Loss'].apply(lambda x: f"{x:.4f}" if pd.notna(x) else "N/A")
        st.dataframe(display_df, use_container_width=True)
    
    # Raw data viewer
    with st.expander("Raw Data"):
        if selected_model != 'All' and len(filtered_df) == 1:
            st.json(filtered_df.iloc[0]['raw_data'])
        else:
            st.info("Select a specific model to view raw data")

if __name__ == "__main__":
    main()