leaderboard-viewer / src /streamlit_app.py
Anas Awadalla
v0
587e0bc
raw
history blame
13.5 kB
import streamlit as st
import pandas as pd
import altair as alt
from huggingface_hub import HfApi, hf_hub_download
import json
from pathlib import Path
import os
from typing import Dict, List, Optional
import numpy as np
# Page config
st.set_page_config(
page_title="Grounding Benchmark Leaderboard",
page_icon="🎯",
layout="wide"
)
# Constants
REPO_ID = "mlfoundations-cua-dev/leaderboard"
GROUNDING_PATH = "grounding"
# Baselines for different datasets
BASELINES = {
"screenspot-v2": {
"Qwen2-VL-7B": {
"desktop_text": 52.01,
"desktop_icon": 44.98,
"web_text": 33.04,
"web_icon": 21.84,
"overall": 37.96
},
"UI-TARS-2B": {
"desktop_text": 90.7,
"desktop_icon": 68.6,
"web_text": 87.2,
"web_icon": 84.7,
"overall": 82.8
},
"UI-TARS-7B": {
"desktop_text": 95.4,
"desktop_icon": 87.8,
"web_text": 93.8,
"web_icon": 91.6,
"overall": 92.2
},
"UI-TARS-72B": {
"desktop_text": 91.2,
"desktop_icon": 87.8,
"web_text": 87.7,
"web_icon": 86.3,
"overall": 88.3
}
}
}
@st.cache_data(ttl=300) # Cache for 5 minutes
def fetch_leaderboard_data():
"""Fetch all grounding results from HuggingFace leaderboard."""
api = HfApi()
try:
# List all files in the grounding directory
files = api.list_repo_files(repo_id=REPO_ID, repo_type="dataset")
grounding_files = [f for f in files if f.startswith(f"{GROUNDING_PATH}/") and f.endswith(".json")]
results = []
for file_path in grounding_files:
try:
# Download and parse each JSON file
local_path = hf_hub_download(
repo_id=REPO_ID,
filename=file_path,
repo_type="dataset"
)
with open(local_path, 'r') as f:
data = json.load(f)
# Extract key information
metadata = data.get("metadata", {})
metrics = data.get("metrics", {})
detailed_results = data.get("detailed_results", {})
# Parse the file path to get dataset and model info
path_parts = file_path.split('/')
dataset_name = path_parts[1] if len(path_parts) > 1 else "unknown"
# Get model name from metadata or path
model_name = metadata.get("model_checkpoint", "").split('/')[-1]
if not model_name and len(path_parts) > 2:
model_name = path_parts[2].replace("results_", "").replace(".json", "")
# Extract UI type results if available
ui_type_results = detailed_results.get("by_ui_type", {})
dataset_type_results = detailed_results.get("by_dataset_type", {})
results.append({
"dataset": dataset_name,
"model": model_name,
"model_path": metadata.get("model_checkpoint", ""),
"overall_accuracy": metrics.get("accuracy", 0) * 100, # Convert to percentage
"total_samples": metrics.get("total", 0),
"timestamp": metadata.get("evaluation_timestamp", ""),
"checkpoint_steps": metadata.get("checkpoint_steps"),
"training_loss": metadata.get("training_loss"),
"ui_type_results": ui_type_results,
"dataset_type_results": dataset_type_results,
"raw_data": data
})
except Exception as e:
st.warning(f"Error loading {file_path}: {str(e)}")
continue
return pd.DataFrame(results)
except Exception as e:
st.error(f"Error fetching leaderboard data: {str(e)}")
return pd.DataFrame()
def parse_ui_type_metrics(df: pd.DataFrame, dataset_filter: str) -> pd.DataFrame:
"""Parse UI type metrics from the results dataframe."""
metrics_list = []
for _, row in df.iterrows():
if row['dataset'] != dataset_filter:
continue
model = row['model']
ui_results = row['ui_type_results']
# For ScreenSpot datasets, we have desktop/web and text/icon
if 'screenspot' in dataset_filter.lower():
# Calculate aggregated metrics
desktop_text = ui_results.get('desktop_text', {}).get('correct', 0) / max(ui_results.get('desktop_text', {}).get('total', 1), 1) * 100
desktop_icon = ui_results.get('desktop_icon', {}).get('correct', 0) / max(ui_results.get('desktop_icon', {}).get('total', 1), 1) * 100
web_text = ui_results.get('web_text', {}).get('correct', 0) / max(ui_results.get('web_text', {}).get('total', 1), 1) * 100
web_icon = ui_results.get('web_icon', {}).get('correct', 0) / max(ui_results.get('web_icon', {}).get('total', 1), 1) * 100
# Calculate averages
desktop_avg = (desktop_text + desktop_icon) / 2 if desktop_text or desktop_icon else 0
web_avg = (web_text + web_icon) / 2 if web_text or web_icon else 0
text_avg = (desktop_text + web_text) / 2 if desktop_text or web_text else 0
icon_avg = (desktop_icon + web_icon) / 2 if desktop_icon or web_icon else 0
metrics_list.append({
'model': model,
'desktop_text': desktop_text,
'desktop_icon': desktop_icon,
'web_text': web_text,
'web_icon': web_icon,
'desktop_avg': desktop_avg,
'web_avg': web_avg,
'text_avg': text_avg,
'icon_avg': icon_avg,
'overall': row['overall_accuracy']
})
return pd.DataFrame(metrics_list)
def create_bar_chart(data: pd.DataFrame, metric: str, title: str):
"""Create a bar chart for a specific metric."""
# Prepare data for the chart
chart_data = []
# Add model results
for _, row in data.iterrows():
if metric in row and row[metric] > 0:
chart_data.append({
'Model': row['model'],
'Score': row[metric],
'Type': 'Evaluated'
})
# Add baselines if available
dataset = st.session_state.get('selected_dataset', '')
if dataset in BASELINES:
for baseline_name, baseline_metrics in BASELINES[dataset].items():
metric_key = metric.replace('_avg', '').replace('avg', 'overall')
if metric_key in baseline_metrics:
chart_data.append({
'Model': baseline_name,
'Score': baseline_metrics[metric_key],
'Type': 'Baseline'
})
if not chart_data:
return None
df_chart = pd.DataFrame(chart_data)
# Create the bar chart
chart = alt.Chart(df_chart).mark_bar().encode(
x=alt.X('Model:N',
sort=alt.EncodingSortField(field='Score', order='descending'),
axis=alt.Axis(labelAngle=-45)),
y=alt.Y('Score:Q',
scale=alt.Scale(domain=[0, 100]),
axis=alt.Axis(title='Score (%)')),
color=alt.Color('Type:N',
scale=alt.Scale(domain=['Evaluated', 'Baseline'],
range=['#4ECDC4', '#FFA726'])),
tooltip=['Model', 'Score', 'Type']
).properties(
title=title,
width=400,
height=300
)
# Add value labels
text = chart.mark_text(
align='center',
baseline='bottom',
dy=-5
).encode(
text=alt.Text('Score:Q', format='.1f')
)
return chart + text
def main():
st.title("🎯 Grounding Benchmark Leaderboard")
st.markdown("Visualization of model performance on grounding benchmarks")
# Fetch data
with st.spinner("Loading leaderboard data..."):
df = fetch_leaderboard_data()
if df.empty:
st.warning("No data available in the leaderboard.")
return
# Sidebar filters
st.sidebar.header("Filters")
# Dataset filter
datasets = sorted(df['dataset'].unique())
selected_dataset = st.sidebar.selectbox("Select Dataset", datasets)
st.session_state['selected_dataset'] = selected_dataset
# Filter data
filtered_df = df[df['dataset'] == selected_dataset]
# Model filter (optional)
models = ['All'] + sorted(filtered_df['model'].unique())
selected_model = st.sidebar.selectbox("Select Model", models)
if selected_model != 'All':
filtered_df = filtered_df[filtered_df['model'] == selected_model]
# Main content
st.header(f"Results for {selected_dataset}")
# Overall metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Models Evaluated", len(filtered_df))
with col2:
if not filtered_df.empty:
best_acc = filtered_df['overall_accuracy'].max()
best_model = filtered_df[filtered_df['overall_accuracy'] == best_acc]['model'].iloc[0]
st.metric("Best Overall Accuracy", f"{best_acc:.1f}%", help=f"Model: {best_model}")
with col3:
total_samples = filtered_df['total_samples'].sum()
st.metric("Total Samples Evaluated", f"{total_samples:,}")
# Parse UI type metrics
ui_metrics_df = parse_ui_type_metrics(filtered_df, selected_dataset)
if not ui_metrics_df.empty and 'screenspot' in selected_dataset.lower():
st.subheader("Performance by UI Type")
# Create charts in a grid
col1, col2 = st.columns(2)
with col1:
# Overall Average
chart = create_bar_chart(ui_metrics_df, 'overall', 'Overall Average')
if chart:
st.altair_chart(chart, use_container_width=True)
# Desktop Average
chart = create_bar_chart(ui_metrics_df, 'desktop_avg', 'Desktop Average')
if chart:
st.altair_chart(chart, use_container_width=True)
# Text Average
chart = create_bar_chart(ui_metrics_df, 'text_avg', 'Text Average (UI-Type)')
if chart:
st.altair_chart(chart, use_container_width=True)
with col2:
# Web Average
chart = create_bar_chart(ui_metrics_df, 'web_avg', 'Web Average')
if chart:
st.altair_chart(chart, use_container_width=True)
# Icon Average
chart = create_bar_chart(ui_metrics_df, 'icon_avg', 'Icon Average (UI-Type)')
if chart:
st.altair_chart(chart, use_container_width=True)
# Detailed breakdown
with st.expander("Detailed UI Type Breakdown"):
# Create a heatmap-style table
detailed_metrics = []
for _, row in ui_metrics_df.iterrows():
detailed_metrics.append({
'Model': row['model'],
'Desktop Text': f"{row['desktop_text']:.1f}%",
'Desktop Icon': f"{row['desktop_icon']:.1f}%",
'Web Text': f"{row['web_text']:.1f}%",
'Web Icon': f"{row['web_icon']:.1f}%",
'Overall': f"{row['overall']:.1f}%"
})
if detailed_metrics:
st.dataframe(pd.DataFrame(detailed_metrics), use_container_width=True)
else:
# For non-ScreenSpot datasets, show a simple bar chart
st.subheader("Model Performance")
chart_data = filtered_df[['model', 'overall_accuracy']].copy()
chart_data.columns = ['Model', 'Accuracy']
chart = alt.Chart(chart_data).mark_bar().encode(
x=alt.X('Model:N', sort='-y', axis=alt.Axis(labelAngle=-45)),
y=alt.Y('Accuracy:Q', scale=alt.Scale(domain=[0, 100])),
tooltip=['Model', 'Accuracy']
).properties(
width=800,
height=400
)
st.altair_chart(chart, use_container_width=True)
# Model details table
with st.expander("Model Details"):
display_df = filtered_df[['model', 'overall_accuracy', 'total_samples', 'checkpoint_steps', 'training_loss', 'timestamp']].copy()
display_df.columns = ['Model', 'Accuracy (%)', 'Samples', 'Checkpoint Steps', 'Training Loss', 'Timestamp']
display_df['Accuracy (%)'] = display_df['Accuracy (%)'].apply(lambda x: f"{x:.2f}")
display_df['Training Loss'] = display_df['Training Loss'].apply(lambda x: f"{x:.4f}" if pd.notna(x) else "N/A")
st.dataframe(display_df, use_container_width=True)
# Raw data viewer
with st.expander("Raw Data"):
if selected_model != 'All' and len(filtered_df) == 1:
st.json(filtered_df.iloc[0]['raw_data'])
else:
st.info("Select a specific model to view raw data")
if __name__ == "__main__":
main()