Spaces:
Sleeping
Sleeping
File size: 12,367 Bytes
3e72c2b f499a2d 6806cde f499a2d 3e72c2b f499a2d 3e72c2b f499a2d 1bfafd9 f499a2d 3e72c2b f499a2d 3e72c2b f499a2d 3e72c2b f499a2d 3e72c2b f499a2d 3e72c2b f499a2d 3e72c2b 1bfafd9 51d956c 1bfafd9 f499a2d 3e72c2b 1bfafd9 f499a2d 3e72c2b f499a2d 3e72c2b f499a2d 3e72c2b 51d956c 3e72c2b 51d956c 3e72c2b f499a2d 3e72c2b f499a2d 51d956c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import tempfile
from urllib.parse import urlparse
from langchain.schema import HumanMessage, AIMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langchain_core.messages import AnyMessage, SystemMessage
from langchain_core.tools import tool
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.tools.retriever import create_retriever_tool
from langgraph.graph.message import add_messages
from langgraph.graph import START, StateGraph, MessagesState, END
from langgraph.prebuilt import tools_condition, ToolNode
import os
from dotenv import load_dotenv
from typing import TypedDict, Annotated, Optional
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_huggingface import (
ChatHuggingFace,
HuggingFaceEndpoint,
HuggingFaceEmbeddings,
)
from langchain_google_genai import ChatGoogleGenerativeAI
import requests
from huggingface_hub import login
load_dotenv()
@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
"""
Save content to a temporary file and return the path.
Useful for processing files from the GAIA API.
Args:
content: The content to save to the file
filename: Optional filename, will generate a random name if not provided
Returns:
Path to the saved file
"""
temp_dir = tempfile.gettempdir()
if filename is None:
temp_file = tempfile.NamedTemporaryFile(delete=False)
filepath = temp_file.name
else:
filepath = os.path.join(temp_dir, filename)
# Write content to the file
with open(filepath, "w") as f:
f.write(content)
return f"File saved to {filepath}. You can read this file to process its contents."
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
]
)
return {"arvix_results": formatted_search_docs}
@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
"""
Download a file from a URL and save it to a temporary location.
Args:
url: The URL to download from
filename: Optional filename, will generate one based on URL if not provided
Returns:
Path to the downloaded file
"""
try:
# Parse URL to get filename if not provided
if not filename:
path = urlparse(url).path
filename = os.path.basename(path)
if not filename:
# Generate a random name if we couldn't extract one
import uuid
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
# Create temporary file
temp_dir = tempfile.gettempdir()
filepath = os.path.join(temp_dir, filename)
# Download the file
response = requests.get(url, stream=True)
response.raise_for_status()
# Save the file
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return f"File downloaded to {filepath}. You can now process this file."
except Exception as e:
return f"Error downloading file: {str(e)}"
@tool
def extract_text_from_image(image_path: str) -> str:
"""
Extract text from an image using pytesseract (if available).
Args:
image_path: Path to the image file
Returns:
Extracted text or error message
"""
try:
# Try to import pytesseract
import pytesseract
from PIL import Image
# Open the image
image = Image.open(image_path)
# Extract text
text = pytesseract.image_to_string(image)
return f"Extracted text from image:\n\n{text}"
except ImportError:
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
except Exception as e:
return f"Error extracting text from image: {str(e)}"
@tool
def analyze_csv_file(file_path: str, query: str) -> str:
"""
Analyze a CSV file using pandas and answer a question about it.
Args:
file_path: Path to the CSV file
query: Question about the data
Returns:
Analysis result or error message
"""
try:
import pandas as pd
# Read the CSV file
df = pd.read_csv(file_path)
# Run various analyses based on the query
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except ImportError:
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
except Exception as e:
return f"Error analyzing CSV file: {str(e)}"
@tool
def analyze_excel_file(file_path: str, query: str) -> str:
"""
Analyze an Excel file using pandas and answer a question about it.
Args:
file_path: Path to the Excel file
query: Question about the data
Returns:
Analysis result or error message
"""
try:
import pandas as pd
# Read the Excel file
df = pd.read_excel(file_path)
# Run various analyses based on the query
result = (
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
)
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except ImportError:
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
except Exception as e:
return f"Error analyzing Excel file: {str(e)}"
# Initialize the DuckDuckGo search tool
search_tool = DuckDuckGoSearchResults()
# # Load LLM model
# llm = ChatOpenAI(
# model="gpt-4o",
# base_url="https://models.inference.ai.azure.com",
# api_key=os.environ["GITHUB_TOKEN"],
# temperature=0.2,
# max_tokens=4096,
# )
# llm = ChatHuggingFace(
# llm=HuggingFaceEndpoint(
# repo_id="Qwen/Qwen3-4B",
# # repo_id="meta-llama/Llama-3-70B-Instruct",
# temperature=0,
# huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"],
# ),
# verbose=True,
# )
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash-exp", google_api_key=os.environ["GOOGLE_API_KEY"]
)
tools = [
analyze_csv_file,
analyze_excel_file,
extract_text_from_image,
download_file_from_url,
save_and_read_file,
web_search,
wiki_search,
arvix_search,
]
# Bind the tools to the LLM
model_with_tools = llm.bind_tools(tools)
tool_node = ToolNode(tools)
class AgentState(TypedDict):
"""State of the agent."""
input_file: Optional[str]
messages: Annotated[list[AnyMessage], add_messages]
def build_agent_workflow():
"""Build the agent workflow."""
def call_model(state: AgentState):
print("State:", state["messages"])
question = state["messages"][-1].content
context = f"""
You are a helpful assistant tasked with answering questions using a set of tools.
"""
# System message
if state.get("input_file"):
try:
with open(state.get("input_file"), "r") as f:
file_content = f.read()
print("File content:", file_content)
# Determine file type from extension
file_ext = os.path.splitext(state.get("input_file"))[1].lower()
context = f"""
Question: {question}
This question has an associated file. Here is the file content:
```{file_ext}
{file_content}
```
Analyze the file content above to answer the question."""
except Exception as file_e:
context = f""" Question: {state["message"]}
This question has an associated file at path: {state.get("input_file")}
However, there was an error reading the file: {file_e}
You can still try to answer the question based on the information provided.
"""
if question.startswith(".") or ".rewsna eht sa" in question:
print("Reversed text detected.")
print(state.get("messages")[::-1])
context = f"""
This question appears to be in reversed text. your task to reverse the sentence. Here's the reversed example:
.rewsna eht sa "tfel" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI
and the answer is:
"If you understand this sentence, write the opposite of the word "left" as the answer."
Now rewrite in to proper formate the {question}. Remember to format your answer exactly as requested.
"""
system_prompt = SystemMessage(
f"""{context}
When answering, provide ONLY the precise answer requested.
Do not include explanations, steps, reasoning, or additional text.
Be direct and specific. GAIA benchmark requires exact matching answers.
For example, if asked "What is the capital of France?", respond simply with "Paris".
"""
)
return {
"messages": [model_with_tools.invoke([system_prompt] + state["messages"])],
# "input_file": state["input_file"],
}
# Define the state graph
workflow = StateGraph(MessagesState)
workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)
workflow.add_edge(START, "agent")
workflow.add_conditional_edges("agent", tools_condition)
workflow.add_edge("tools", "agent")
app = workflow.compile()
return app
if __name__ == "__main__":
question = '.rewsna eht sa "tfel" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI'
# Build the graph
graph = build_agent_workflow()
# Run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages, "input_file": None})
for m in messages["messages"]:
m.pretty_print()
|