File size: 12,367 Bytes
3e72c2b
 
f499a2d
 
 
 
 
 
 
6806cde
f499a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e72c2b
 
 
f499a2d
 
 
 
3e72c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f499a2d
 
1bfafd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f499a2d
3e72c2b
 
 
f499a2d
 
3e72c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f499a2d
 
 
3e72c2b
 
 
f499a2d
 
3e72c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f499a2d
 
 
3e72c2b
 
 
f499a2d
 
3e72c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bfafd9
 
 
 
 
 
 
 
51d956c
1bfafd9
 
 
f499a2d
3e72c2b
 
 
 
 
1bfafd9
 
 
f499a2d
 
 
 
 
 
3e72c2b
 
f499a2d
3e72c2b
 
f499a2d
 
3e72c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51d956c
 
 
3e72c2b
51d956c
 
 
 
 
 
3e72c2b
 
 
 
 
 
 
 
 
 
 
 
 
f499a2d
 
 
 
 
 
 
3e72c2b
f499a2d
 
 
 
 
51d956c
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import tempfile
from urllib.parse import urlparse
from langchain.schema import HumanMessage, AIMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langchain_core.messages import AnyMessage, SystemMessage
from langchain_core.tools import tool
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.tools.retriever import create_retriever_tool

from langgraph.graph.message import add_messages
from langgraph.graph import START, StateGraph, MessagesState, END
from langgraph.prebuilt import tools_condition, ToolNode

import os
from dotenv import load_dotenv
from typing import TypedDict, Annotated, Optional
from langchain_community.tools import DuckDuckGoSearchResults

from langchain_huggingface import (
    ChatHuggingFace,
    HuggingFaceEndpoint,
    HuggingFaceEmbeddings,
)

from langchain_google_genai import ChatGoogleGenerativeAI
import requests
from huggingface_hub import login

load_dotenv()


@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
    """

    Save content to a temporary file and return the path.

    Useful for processing files from the GAIA API.



    Args:

        content: The content to save to the file

        filename: Optional filename, will generate a random name if not provided



    Returns:

        Path to the saved file

    """
    temp_dir = tempfile.gettempdir()
    if filename is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False)
        filepath = temp_file.name
    else:
        filepath = os.path.join(temp_dir, filename)

    # Write content to the file
    with open(filepath, "w") as f:
        f.write(content)

    return f"File saved to {filepath}. You can read this file to process its contents."


@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.



    Args:

        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"wiki_results": formatted_search_docs}


@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.



    Args:

        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"web_results": formatted_search_docs}


@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.



    Args:

        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"arvix_results": formatted_search_docs}


@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
    """

    Download a file from a URL and save it to a temporary location.



    Args:

        url: The URL to download from

        filename: Optional filename, will generate one based on URL if not provided



    Returns:

        Path to the downloaded file

    """
    try:
        # Parse URL to get filename if not provided
        if not filename:
            path = urlparse(url).path
            filename = os.path.basename(path)
            if not filename:
                # Generate a random name if we couldn't extract one
                import uuid

                filename = f"downloaded_{uuid.uuid4().hex[:8]}"

        # Create temporary file
        temp_dir = tempfile.gettempdir()
        filepath = os.path.join(temp_dir, filename)

        # Download the file
        response = requests.get(url, stream=True)
        response.raise_for_status()

        # Save the file
        with open(filepath, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)

        return f"File downloaded to {filepath}. You can now process this file."
    except Exception as e:
        return f"Error downloading file: {str(e)}"


@tool
def extract_text_from_image(image_path: str) -> str:
    """

    Extract text from an image using pytesseract (if available).



    Args:

        image_path: Path to the image file



    Returns:

        Extracted text or error message

    """
    try:
        # Try to import pytesseract
        import pytesseract
        from PIL import Image

        # Open the image
        image = Image.open(image_path)

        # Extract text
        text = pytesseract.image_to_string(image)

        return f"Extracted text from image:\n\n{text}"
    except ImportError:
        return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
    except Exception as e:
        return f"Error extracting text from image: {str(e)}"


@tool
def analyze_csv_file(file_path: str, query: str) -> str:
    """

    Analyze a CSV file using pandas and answer a question about it.



    Args:

        file_path: Path to the CSV file

        query: Question about the data



    Returns:

        Analysis result or error message

    """
    try:
        import pandas as pd

        # Read the CSV file
        df = pd.read_csv(file_path)

        # Run various analyses based on the query
        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"

        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())

        return result
    except ImportError:
        return "Error: pandas is not installed. Please install it with 'pip install pandas'."
    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"


@tool
def analyze_excel_file(file_path: str, query: str) -> str:
    """

    Analyze an Excel file using pandas and answer a question about it.



    Args:

        file_path: Path to the Excel file

        query: Question about the data



    Returns:

        Analysis result or error message

    """
    try:
        import pandas as pd

        # Read the Excel file
        df = pd.read_excel(file_path)

        # Run various analyses based on the query
        result = (
            f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        )
        result += f"Columns: {', '.join(df.columns)}\n\n"

        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())

        return result
    except ImportError:
        return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"


# Initialize the DuckDuckGo search tool
search_tool = DuckDuckGoSearchResults()


# # Load LLM model
# llm = ChatOpenAI(
#     model="gpt-4o",
#     base_url="https://models.inference.ai.azure.com",
#     api_key=os.environ["GITHUB_TOKEN"],
#     temperature=0.2,
#     max_tokens=4096,
# )
# llm = ChatHuggingFace(
#     llm=HuggingFaceEndpoint(
#         repo_id="Qwen/Qwen3-4B",
#         # repo_id="meta-llama/Llama-3-70B-Instruct",
#         temperature=0,
#         huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"],
#     ),
#     verbose=True,
# )
llm = ChatGoogleGenerativeAI(
    model="gemini-2.0-flash-exp", google_api_key=os.environ["GOOGLE_API_KEY"]
)
tools = [
    analyze_csv_file,
    analyze_excel_file,
    extract_text_from_image,
    download_file_from_url,
    save_and_read_file,
    web_search,
    wiki_search,
    arvix_search,
]
# Bind the tools to the LLM
model_with_tools = llm.bind_tools(tools)
tool_node = ToolNode(tools)


class AgentState(TypedDict):
    """State of the agent."""

    input_file: Optional[str]
    messages: Annotated[list[AnyMessage], add_messages]


def build_agent_workflow():
    """Build the agent workflow."""

    def call_model(state: AgentState):
        print("State:", state["messages"])
        question = state["messages"][-1].content
        context = f"""

            You are a helpful assistant tasked with answering questions using a set of tools.

            """
        # System message
        if state.get("input_file"):
            try:
                with open(state.get("input_file"), "r") as f:
                    file_content = f.read()
                    print("File content:", file_content)

                # Determine file type from extension
                file_ext = os.path.splitext(state.get("input_file"))[1].lower()
                context = f"""

                    Question: {question}

                    This question has an associated file. Here is the file content:

                    ```{file_ext}

                    {file_content}

                    ```

                    Analyze the file content above to answer the question."""
            except Exception as file_e:
                context = f""" Question: {state["message"]}

                    This question has an associated file at path: {state.get("input_file")}

                    However, there was an error reading the file: {file_e}

                    You can still try to answer the question based on the information provided.

                    """

        if question.startswith(".") or ".rewsna eht sa" in question:
            print("Reversed text detected.")
            print(state.get("messages")[::-1])

            context = f"""

            This question appears to be in reversed text. your task to reverse the sentence. Here's the reversed example:

            .rewsna eht sa "tfel" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI

            and the answer is:

            "If you understand this sentence, write the opposite of the word "left" as the answer."

       

            Now rewrite in to proper formate the {question}. Remember to format your answer exactly as requested.

            """
        system_prompt = SystemMessage(
            f"""{context}

                When answering, provide ONLY the precise answer requested. 

                Do not include explanations, steps, reasoning, or additional text.

                Be direct and specific. GAIA benchmark requires exact matching answers.

                For example, if asked "What is the capital of France?", respond simply with "Paris".

                """
        )
        return {
            "messages": [model_with_tools.invoke([system_prompt] + state["messages"])],
            # "input_file": state["input_file"],
        }

    # Define the state graph
    workflow = StateGraph(MessagesState)
    workflow.add_node("agent", call_model)
    workflow.add_node("tools", tool_node)

    workflow.add_edge(START, "agent")
    workflow.add_conditional_edges("agent", tools_condition)
    workflow.add_edge("tools", "agent")
    app = workflow.compile()
    return app


if __name__ == "__main__":
    question = '.rewsna eht sa "tfel" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI'
    # Build the graph
    graph = build_agent_workflow()
    # Run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages, "input_file": None})
    for m in messages["messages"]:
        m.pretty_print()