|
--- |
|
emoji: "\U0001F440" |
|
sdk: static |
|
pinned: false |
|
license: mit |
|
title: Realtime YOLOv9 Object Detection WebGPU (Vue) |
|
colorFrom: blue |
|
colorTo: green |
|
models: |
|
- Xenova/yolos-tiny |
|
- Xenova/gelan-c_all |
|
short_description: Yet another Realtime YOLOv9 Object Detection WebGPU |
|
--- |
|
|
|
<h1 align="center">Realtime YOLOv9 Object Detection WebGPU (Vue)</h1> |
|
|
|
<p align="center"> |
|
[<a href="https://yolov9-od-realtime-webgpu-vue.netlify.app/">Try it</a>] |
|
</p> |
|
|
|
> Heavily inspired by [WebGPU Video Object Detection - a Hugging Face Space by Xenova](https://huggingface.co/spaces/Xenova/webgpu-video-object-detection) |
|
|
|
# Realtime YOLOv9 Object Detection WebGPU |
|
|
|
## Getting Started |
|
|
|
Follow the steps below to set up and run the application. |
|
|
|
### 1. Clone the Repository |
|
|
|
Clone the examples repository from GitHub: |
|
|
|
```sh |
|
git clone https://github.com/proj-airi/webai-examples.git |
|
``` |
|
|
|
### 2. Navigate to the Project Directory |
|
|
|
Change your working directory to the `yolov9-od-realtime-webgpu` folder: |
|
|
|
```sh |
|
cd apps/yolov9-od-realtime-webgpu |
|
``` |
|
|
|
### 3. Install Dependencies |
|
|
|
Install the necessary dependencies using npm: |
|
|
|
```sh |
|
npm i |
|
``` |
|
|
|
### 4. Run the Development Server |
|
|
|
Start the development server: |
|
|
|
```sh |
|
npm run dev |
|
``` |
|
|
|
The application should now be running locally. Open your browser and go to `http://localhost:5175` to see it in action. |
|
|
|
## Acknowledgements |
|
|
|
Great thanks to what Xenova have done. |
|
|
|
> [Source code](https://github.com/huggingface/transformers.js-examples/tree/2720e7daedb9304756105d1c7eb30dd14830fd15/video-object-detection) |
|
> |
|
> [Reference code](https://github.com/huggingface/transformers.js/blob/a8413a99e1636c04c872f263017373ce045ec998/tests/pipelines/test_pipelines_object_detection.js#L9) |
|
|