Spaces:
Runtime error
Runtime error
| import os | |
| import re | |
| from camel_tools.tokenizers.word import simple_word_tokenize | |
| from camel_tools.ner import NERecognizer | |
| import nltk | |
| import torch | |
| from collections import Counter | |
| from transformers import pipeline, AutoModel, AutoTokenizer | |
| import PyPDF2 | |
| import gradio as gr | |
| import openai | |
| # تعيين التوكن الخاص بـ OpenAI | |
| openai.api_key = "sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU" | |
| # تحميل وتفعيل الأدوات المطلوبة | |
| nltk.download('punkt') | |
| # التحقق من توفر GPU واستخدامه | |
| device = 0 إذا torch.cuda.is_available() else -1 | |
| # تحميل نماذج التحليل اللغوي | |
| analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device) | |
| # تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT | |
| arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic") | |
| arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic") | |
| arabic_gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base") | |
| arabic_gpt2_model = AutoModel.from_pretrained("aubmindlab/aragpt2-base") | |
| arabic_electra_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/araelectra-base-discriminator") | |
| arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-discriminator") | |
| arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02") | |
| arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02") | |
| # دالة لتحليل النص باستخدام camel_tools | |
| def camel_ner_analysis(text): | |
| ner = NERecognizer.pretrained() | |
| tokens = simple_word_tokenize(text) | |
| entities = ner.predict(tokens) | |
| entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []} | |
| for token, tag in zip(tokens, entities): | |
| إذا tag in entity_dict: | |
| entity_dict[tag].append((token, tag)) | |
| return entity_dict | |
| # دالة لتحليل المشاعر | |
| def analyze_sentiments(text): | |
| sentiments = analyzer(text) | |
| return sentiments | |
| # دالة لتجزئة النص إلى جمل | |
| def nltk_extract_sentences(text): | |
| sentences = nltk.tokenize.sent_tokenize(text, language='arabic') | |
| return sentences | |
| # دالة لاستخراج الاقتباسات من النص | |
| def nltk_extract_quotes(text): | |
| quotes = [] | |
| sentences = nltk.tokenize.sent_tokenize(text, language='arabic') | |
| for sentence in sentences: | |
| إذا '"' in sentence أو '«' in sentence أو '»' in sentence: | |
| quotes.append(sentence) | |
| return quotes | |
| # دالة لعد الرموز في النص | |
| def count_tokens(text): | |
| tokens = simple_word_tokenize(text) | |
| return len(tokens) | |
| # دالة لاستخراج النص من ملفات PDF | |
| def extract_pdf_text(file_path): | |
| مع open(file_path, "rb") كما pdf_file: | |
| pdf_reader = PyPDF2.PdfReader(pdf_file) | |
| text = "" | |
| لكل page_num in range(len(pdf_reader.pages)): | |
| page = pdf_reader.pages[page_num] | |
| text += page.extract_text() | |
| return text | |
| # دالة لاستخراج المشاهد من النص | |
| def extract_scenes(text): | |
| scenes = re.split(r'داخلي|خارجي', text) | |
| scenes = [scene.strip() for scene in scenes إذا scene.strip()] | |
| return scenes | |
| # دالة لاستخراج تفاصيل المشهد (المكان والوقت) | |
| def extract_scene_details(scene): | |
| details = {} | |
| location_match = re.search(r'(داخلي|خارجي)', scene) | |
| time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene) | |
| إذا location_match: | |
| details['location'] = location_match.group() | |
| إذا time_match: | |
| details['time'] = time_match.group() | |
| return details | |
| # دالة لاستخراج أعمار الشخصيات | |
| def extract_ages(text): | |
| ages = re.findall(r'\b(\d{1,2})\s*(?:عام|سنة|سنوات)\s*(?:من العمر|عمره|عمرها)', text) | |
| return ages | |
| # دالة لاستخراج وصف الشخصيات | |
| def extract_character_descriptions(text): | |
| descriptions = re.findall(r'شخصية\s*(.*?)\s*:\s*وصف\s*(.*?)\s*(?:\.|،)', text, re.DOTALL) | |
| return descriptions | |
| # دالة لاستخراج تكرار الشخصيات | |
| def extract_character_frequency(entities): | |
| persons = [ent[0] for ent in entities['PERSON']] | |
| frequency = Counter(persons) | |
| return frequency | |
| # دالة لاستخراج الحوارات وتحديد المتحدثين | |
| def extract_dialogues(text): | |
| dialogues = re.findall(r'(.*?)(?:\s*:\s*)(.*?)(?=\n|$)', text, re.DOTALL) | |
| return dialogues | |
| # دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج | |
| def analyze_and_complete(file_paths): | |
| results = [] | |
| output_directory = os.getenv("SPACE_DIR", "/app/output") | |
| لكل file_path in file_paths: | |
| إذا file_path.endswith(".pdf"): | |
| text = extract_pdf_text(file_path) | |
| else: | |
| مع open(file_path, "r", encoding="utf-8") كما file: | |
| text = file.read() | |
| filename_prefix = os.path.splitext(os.path.basename(file_path))[0] | |
| camel_entities = camel_ner_analysis(text) | |
| sentiments = analyze_sentiments(text) | |
| sentences = nltk_extract_sentences(text) | |
| quotes = nltk_extract_quotes(text) | |
| token_count = count_tokens(text) | |
| scenes = extract_scenes(text) | |
| ages = extract_ages(text) | |
| character_descriptions = extract_character_descriptions(text) | |
| character_frequency = extract_character_frequency(camel_entities) | |
| dialogues = extract_dialogues(text) | |
| scene_details = [extract_scene_details(scene) لكل scene in scenes] | |
| # حفظ النتائج إلى ملفات | |
| مع open(os.path.join(output_directory, f"{filename_prefix}_entities.txt"), "w", encoding="utf-8") كما file: | |
| file.write(str(camel_entities)) | |
| مع open(os.path.join(output_directory, f"{filename_prefix}_sentiments.txt"), "w", encoding="utf-8") كما file: | |
| file.write(str(sentiments)) | |
| مع open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") كما file: | |
| file.write("\n".join(sentences)) | |
| مع open(os.path.join(output_directory, f"{filename_prefix}_quotes.txt"), "w", encoding="utf-8") كما file: | |
| file.write("\n".join(quotes)) | |
| مع open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") كما file: | |
| file.write(str(token_count)) | |
| مع open(os.path.join(output_directory, f"{filename_prefix}_scenes.txt"), "w", encoding="utf-8") كما file: | |
| file.write("\n".join(scenes)) | |
| مع open(os.path.join(output_directory, f"{filename_prefix}_scene_details.txt"), "w", encoding="utf-8") كما file: | |
| file.write(str(scene_details)) | |
| مع open(os.path.join(output_directory, f"{filename_prefix}_ages.txt"), "w", encoding="utf-8") كما file: | |
| file.write(str(ages)) | |
| مع open(os.path.join(output_directory, f"{filename_prefix}_character_descriptions.txt"), "w", encoding="utf-8") كما file: | |
| file.write(str(character_descriptions)) | |
| مع open(os.path.join(output_directory, f"{filename_prefix}_character_frequency.txt"), "w", encoding="utf-8") كما file: | |
| file.write(str(character_frequency)) | |
| مع open(os.path.join(output_directory, f"{filename_prefix}_dialogues.txt"), "w", encoding="utf-8") كما file: | |
| file.write(str(dialogues)) | |
| results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues))) | |
| return results | |
| ## تعريف واجهة Gradio | |
| interface = gr.Interface( | |
| fn=analyze_and_complete, | |
| inputs=gr.File(file_count="multiple", type="filepath"), | |
| outputs=gr.outputs.JSON(), | |
| title="Movie Script Analyzer and Completer", | |
| description="Upload text, PDF, or DOCX files to analyze and complete the movie script." | |
| ) | |
| if __name__ == "__main__": | |
| interface.launch() | |