File size: 1,486 Bytes
d4df029
8dfd732
 
28d38c2
 
 
3648075
8dfd732
 
3648075
 
 
 
 
1a5c7c1
 
 
3648075
 
1a5c7c1
3648075
 
 
 
8dfd732
 
 
 
3648075
8dfd732
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from huggingface_hub import login
import os

# Load the base model and adapter
@st.cache_resource
def load_model():
    base_model_name = "Qwen/Qwen2.5-Coder-3B-Instruct"  # Ensure this is the correct base model
    adapter_model_name = "mohamedyd/Natural-Coder-3B-Instruct-V1"

    # Load the base model
    base_model = AutoModelForCausalLM.from_pretrained(base_model_name, trust_remote_code=True)

    # Load the configuration
    config = PeftConfig.from_pretrained(adapter_model_name)
    
    # Load the PEFT adapter on top of the base model
    model = PeftModel.from_pretrained(base_model, adapter_model_name, config=config)

    # Load tokenizer from base model
    tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)

    return model, tokenizer

model, tokenizer = load_model()

# Streamlit App UI
st.title("Natural-Coder-3B-Instruct-V1 Model Interaction")

user_input = st.text_area("Enter your prompt here:", height=150)

if st.button("Generate Response"):
    if user_input:
        inputs = tokenizer(user_input, return_tensors="pt")
        outputs = model.generate(**inputs, max_length=512, num_return_sequences=1)
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        st.write("Model Response:")
        st.write(response)
    else:
        st.write("Please enter a prompt to generate a response.")