File size: 18,641 Bytes
deafbd7 9b8d24a deafbd7 9b8d24a deafbd7 cb4e5b3 deafbd7 9a2a3bc deafbd7 cb4e5b3 deafbd7 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc 3e2ff2f deafbd7 9a2a3bc deafbd7 9a2a3bc 3e2ff2f 9a2a3bc deafbd7 9a2a3bc deafbd7 9a2a3bc 3e2ff2f cb4e5b3 9a2a3bc deafbd7 3e2ff2f 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f deafbd7 9a2a3bc deafbd7 3e2ff2f 0cc5955 9a2a3bc deafbd7 3e2ff2f deafbd7 cb4e5b3 9a2a3bc deafbd7 9a2a3bc 3e2ff2f 9a2a3bc 3e2ff2f cb4e5b3 3e2ff2f deafbd7 cb4e5b3 9a2a3bc 3e2ff2f 9b8d24a 3e2ff2f 9b8d24a 3e2ff2f cb4e5b3 3e2ff2f 9b8d24a 3e2ff2f cb4e5b3 3e2ff2f cb4e5b3 3e2ff2f 9b8d24a 3e2ff2f 0cc5955 9a2a3bc 0cc5955 9a2a3bc 3e2ff2f 9a2a3bc cb4e5b3 9a2a3bc cb4e5b3 9a2a3bc 0cc5955 9a2a3bc cb4e5b3 9a2a3bc 3e2ff2f 9a2a3bc 9b8d24a 9a2a3bc deafbd7 9b8d24a deafbd7 9a2a3bc deafbd7 9b8d24a 9a2a3bc 0cc5955 689850e d8cd6bd 9b8d24a 3fe540b 9b8d24a 689850e d8cd6bd 3e2ff2f 9a2a3bc 0cc5955 3e2ff2f 0cc5955 9b8d24a 3e2ff2f deafbd7 9a2a3bc 9b8d24a 3e2ff2f 0cc5955 9b8d24a 0cc5955 9b8d24a 9a2a3bc 9b8d24a 9a2a3bc deafbd7 9b8d24a 9a2a3bc 9b8d24a cb4e5b3 3e2ff2f 0cc5955 9a2a3bc 0cc5955 9a2a3bc cb4e5b3 deafbd7 9a2a3bc 9b8d24a 9a2a3bc 0cc5955 cb4e5b3 0cc5955 cb4e5b3 9b8d24a 9a2a3bc cb4e5b3 9a2a3bc 3e2ff2f cb4e5b3 0cc5955 9a2a3bc 0cc5955 3e2ff2f cb4e5b3 0cc5955 9b8d24a 0cc5955 9b8d24a 3e2ff2f 9a2a3bc 9b8d24a 9a2a3bc 3e2ff2f 9b8d24a 9a2a3bc 0cc5955 3e2ff2f cb4e5b3 0cc5955 9a2a3bc 0cc5955 9a2a3bc 0cc5955 deafbd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# import mimetypes # No longer needed if file upload is removed
import os
import re
# import shutil # No longer needed if file upload is removed
from typing import Optional
import tempfile
from PIL import Image as PILImage
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
from smolagents.agents import ActionStep, MultiStepAgent
from smolagents.memory import MemoryStep
from smolagents.utils import _is_package_available
import gradio as gr
def pull_messages_from_step_dict(step_log: MemoryStep):
"""Extract messages as dicts for Gradio type='messages' Chatbot"""
if isinstance(step_log, ActionStep):
step_number_str = f"Step {step_log.step_number}" if step_log.step_number is not None else "Processing"
yield {"role": "assistant", "content": f"**{step_number_str}**"}
if hasattr(step_log, "model_output") and step_log.model_output is not None:
model_output = step_log.model_output.strip()
model_output = re.sub(r"```\s*<end_code>[\s\S]*|[\s\S]*<end_code>\s*```", "```", model_output, flags=re.DOTALL)
model_output = re.sub(r"<end_code>", "", model_output)
model_output = model_output.strip()
yield {"role": "assistant", "content": model_output}
if hasattr(step_log, "tool_calls") and step_log.tool_calls:
tc = step_log.tool_calls[0]
tool_info_md = f"🛠️ **Tool Used: {tc.name}**\n"
args = tc.arguments
if isinstance(args, dict):
args_str = str(args.get("answer", str(args)))
else:
args_str = str(args).strip()
if tc.name == "python_interpreter":
code_content = args_str
code_content = re.sub(r"^```python\s*\n?", "", code_content)
code_content = re.sub(r"\n?```\s*$", "", code_content)
code_content = re.sub(r"^\s*<end_code>\s*", "", code_content)
code_content = re.sub(r"\s*<end_code>\s*$", "", code_content)
code_content = code_content.strip()
tool_info_md += f"Executing Code:\n```python\n{code_content}\n```\n"
else:
tool_info_md += f"Arguments: `{args_str}`\n"
if hasattr(step_log, "observations") and step_log.observations and step_log.observations.strip():
obs_content = step_log.observations.strip()
obs_content = re.sub(r"^Execution logs:\s*", "", obs_content).strip()
if obs_content:
tool_info_md += f"📝 **Tool Output/Logs:**\n```text\n{obs_content}\n```\n"
if hasattr(step_log, "error") and step_log.error:
tool_info_md += f"💥 **Error:** {str(step_log.error)}\n"
yield {"role": "assistant", "content": tool_info_md.strip()}
elif hasattr(step_log, "error") and step_log.error:
yield {"role": "assistant", "content": f"💥 **Error:** {str(step_log.error)}"}
footnote_parts = []
if step_log.step_number is not None:
footnote_parts.append(f"Step {step_log.step_number}")
if hasattr(step_log, "duration") and step_log.duration is not None:
footnote_parts.append(f"Duration: {round(float(step_log.duration), 2)}s")
if hasattr(step_log, "input_token_count") and step_log.input_token_count is not None:
footnote_parts.append(f"InTokens: {step_log.input_token_count:,}")
if hasattr(step_log, "output_token_count") and step_log.output_token_count is not None:
footnote_parts.append(f"OutTokens: {step_log.output_token_count:,}")
if footnote_parts:
footnote_text = " | ".join(footnote_parts)
yield {"role": "assistant", "content": f"""<p style="color: #999; font-size: 0.8em; margin-top:0; margin-bottom:0;">{footnote_text}</p>"""}
yield {"role": "assistant", "content": "---"}
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
if not _is_package_available("gradio"):
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
if hasattr(agent, 'interaction_logs'):
agent.interaction_logs.clear()
print("DEBUG Gradio: Cleared agent interaction_logs for new run.")
all_step_logs = []
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
all_step_logs.append(step_log)
if hasattr(agent.model, "last_input_token_count") and agent.model.last_input_token_count is not None:
if isinstance(step_log, ActionStep):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
for msg_dict in pull_messages_from_step_dict(step_log):
yield msg_dict
if not all_step_logs:
yield {"role": "assistant", "content": "Agent did not produce any output."}
return
final_answer_content = all_step_logs[-1]
actual_content_for_handling = final_answer_content
# Check if final_answer_content is a wrapper like FinalAnswerStep and extract the core content
if hasattr(final_answer_content, 'final_answer') and not isinstance(final_answer_content, (str, PILImage.Image, tuple)): # Added tuple to avoid unwrapping already formatted image content
actual_content_for_handling = final_answer_content.final_answer
print(f"DEBUG Gradio: Extracted actual_content_for_handling from FinalAnswerStep: {type(actual_content_for_handling)}")
# Priority 1: Handle raw PIL Image object for direct display
if isinstance(actual_content_for_handling, PILImage.Image):
print("DEBUG Gradio (stream_to_gradio): Actual content IS a raw PIL Image.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file: # delete=False is important
actual_content_for_handling.save(tmp_file, format="PNG")
image_path_for_gradio = tmp_file.name
print(f"DEBUG Gradio: Saved PIL image to temp path: {image_path_for_gradio}")
yield {"role": "assistant", "content": (image_path_for_gradio, "Generated Image")}
return
except Exception as e:
print(f"DEBUG Gradio: Error saving extracted PIL image: {e}")
yield {"role": "assistant", "content": f"**Final Answer (Error displaying image):** {e}"}
return
# Priority 2: Use smolagents' type handling if not a raw PIL image
final_answer_processed = handle_agent_output_types(actual_content_for_handling)
print(f"DEBUG Gradio: final_answer_processed type after handle_agent_output_types: {type(final_answer_processed)}")
if isinstance(final_answer_processed, AgentText):
yield {"role": "assistant", "content": f"**Final Answer:**\n{final_answer_processed.to_string()}"}
elif isinstance(final_answer_processed, AgentImage):
image_path = final_answer_processed.to_string()
print(f"DEBUG Gradio (stream_to_gradio): final_answer_processed is AgentImage. Path: {image_path}")
if image_path and os.path.exists(image_path):
yield {"role": "assistant", "content": (image_path, "Generated Image (from AgentImage)")}
else:
err_msg = f"Error: Image path from AgentImage ('{image_path}') not found or invalid."
print(f"DEBUG Gradio: {err_msg}")
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
elif isinstance(final_answer_processed, AgentAudio):
audio_path = final_answer_processed.to_string()
print(f"DEBUG Gradio (stream_to_gradio): AgentAudio path: {audio_path}")
if audio_path and os.path.exists(audio_path):
yield {"role": "assistant", "content": (audio_path, "Generated Audio")}
else:
err_msg = f"Error: Audio path from AgentAudio ('{audio_path}') not found"
print(f"DEBUG Gradio: {err_msg}")
yield {"role": "assistant", "content": f"**Final Answer ({err_msg})**"}
else:
# This will display the string representation of the object if not specifically handled
yield {"role": "assistant", "content": f"**Final Answer:**\n{str(final_answer_processed)}"}
class GradioUI:
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None): # file_upload_folder kept for potential future use
if not _is_package_available("gradio"):
raise ModuleNotFoundError("Install 'gradio': `pip install 'smolagents[gradio]'`")
self.agent = agent
# self.file_upload_folder = file_upload_folder # Commented out as per request to simplify
# if self.file_upload_folder is not None:
# if not os.path.exists(self.file_upload_folder):
# os.makedirs(self.file_upload_folder, exist_ok=True)
self.file_upload_folder = None # Explicitly disable for now
self._latest_file_path_for_download = None
def _check_for_created_file(self):
self._latest_file_path_for_download = None
if hasattr(self.agent, 'interaction_logs') and self.agent.interaction_logs:
print(f"DEBUG Gradio UI: Checking {len(self.agent.interaction_logs)} interaction log entries for created files.")
for log_entry in reversed(self.agent.interaction_logs):
if isinstance(log_entry, ActionStep):
observations = getattr(log_entry, 'observations', None)
tool_calls = getattr(log_entry, 'tool_calls', []) # Get tool calls if any
# Check if this step involved python_interpreter
is_python_interpreter_step = any(tc.name == "python_interpreter" for tc in tool_calls)
if is_python_interpreter_step and observations and isinstance(observations, str):
print(f"DEBUG Gradio UI (_check_for_file): Python Interpreter Observations: '''{observations[:500]}...'''") # Log snippet
# Regex to find paths specifically printed by our create_document tool
# This pattern expects: "Document created (docx): /tmp/random/generated_document.docx"
match = re.search(
# Capture group 1 is the prefix, group 2 is the path
r"(Document created \((?:docx|pdf|txt)\):|Document converted to PDF:)\s*(/tmp/[a-zA-Z0-9_]+/generated_document\.(?:docx|pdf|txt))",
observations,
re.MULTILINE
)
if match:
# extracted_prefix = match.group(1) # e.g., "Document created (docx):"
extracted_path = match.group(2) # The actual path
print(f"DEBUG Gradio UI: Regex matched. Extracted path: '{extracted_path}'")
normalized_path = os.path.normpath(extracted_path)
if os.path.exists(normalized_path):
self._latest_file_path_for_download = normalized_path
print(f"DEBUG Gradio UI: File path for download SET: {self._latest_file_path_for_download}")
return True
else:
print(f"DEBUG Gradio UI: Path from create_document output ('{normalized_path}') does not exist.")
# else:
# print(f"DEBUG Gradio UI: 'create_document' output pattern not found in this observation block.")
print("DEBUG Gradio UI: No valid generated file path (from create_document) found for download button.")
return False
def interact_with_agent(self, prompt_text: str, current_chat_history: list):
print(f"DEBUG Gradio: interact_with_agent called with prompt: '{prompt_text}'")
updated_chat_history = current_chat_history + [{"role": "user", "content": prompt_text}]
# Initial yield: show user message, hide download components until agent run is complete
yield updated_chat_history, gr.update(visible=False), gr.update(value=None, visible=False)
agent_responses_for_history = []
for msg_dict in stream_to_gradio(self.agent, task=prompt_text, reset_agent_memory=False):
agent_responses_for_history.append(msg_dict)
# Yield progressively to update chat, keep download components hidden during streaming
yield updated_chat_history + agent_responses_for_history, gr.update(visible=False), gr.update(value=None, visible=False)
# After all agent messages are processed and added to history
final_chat_display_content = updated_chat_history + agent_responses_for_history
# Now check for created files to decide visibility of download button
file_found_for_download = self._check_for_created_file()
print(f"DEBUG Gradio: Final chat history for display: {len(final_chat_display_content)} messages. File found for download button: {file_found_for_download}")
# Final yield: update chat, set visibility of download button, keep file display component hidden (it's shown on button click)
yield final_chat_display_content, gr.update(visible=file_found_for_download), gr.update(value=None, visible=False)
def log_user_message(self, text_input_value: str): # Removed current_file_uploads as upload is disabled
full_prompt = text_input_value
# if current_file_uploads: # This part is now disabled
# files_str = ", ".join([os.path.basename(f) for f in current_file_uploads])
# full_prompt += f"\n\n[Uploaded files for context: {files_str}]"
print(f"DEBUG Gradio: Prepared prompt for agent: {full_prompt[:300]}...")
return full_prompt, ""
def prepare_and_show_download_file(self):
if self._latest_file_path_for_download and os.path.exists(self._latest_file_path_for_download):
print(f"DEBUG Gradio UI: Preparing download for UI component: {self._latest_file_path_for_download}")
return gr.File.update(value=self._latest_file_path_for_download,
label=os.path.basename(self._latest_file_path_for_download),
visible=True)
else:
print("DEBUG Gradio UI: No valid file path to prepare for download component.")
return gr.File.update(visible=False, value=None)
def launch(self, **kwargs):
with gr.Blocks(fill_height=True, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue)) as demo:
# file_uploads_log_state = gr.State([]) # No longer needed as upload is disabled
prepared_prompt_for_agent = gr.State("")
gr.Markdown("## Smol Talk with your Agent")
with gr.Row(equal_height=False):
with gr.Column(scale=3): # Main chat column
chatbot_display = gr.Chatbot(
type="messages",
avatar_images=(None, "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-round.png"),
height=700,
show_copy_button=True,
bubble_full_width=False,
show_label=False
)
text_message_input = gr.Textbox(
lines=1,
placeholder="Type your message and press Enter, or Shift+Enter for new line...",
show_label=False
)
with gr.Column(scale=1): # Sidebar column
# --- File Upload Section Removed/Commented Out ---
# if self.file_upload_folder is not None:
# with gr.Accordion("File Upload", open=False):
# file_uploader = gr.File(label="Upload a supporting file (PDF, DOCX, TXT, JPG, PNG)")
# upload_status_text = gr.Textbox(label="Upload Status", interactive=False, lines=1)
# file_uploader.upload(
# self.upload_file,
# [file_uploader, file_uploads_log_state],
# [upload_status_text, file_uploads_log_state],
# )
with gr.Accordion("Generated File", open=True): # Keep this section
download_action_button = gr.Button("Download Generated File", visible=False)
file_download_display_component = gr.File(label="Downloadable Document", visible=False, interactive=False)
# Event Handling Chain for Text Submission
text_message_input.submit(
self.log_user_message,
[text_message_input], # Removed file_uploads_log_state from inputs
[prepared_prompt_for_agent, text_message_input]
).then(
self.interact_with_agent,
[prepared_prompt_for_agent, chatbot_display],
[chatbot_display, download_action_button, file_download_display_component]
)
download_action_button.click(
self.prepare_and_show_download_file,
[],
[file_download_display_component]
)
demo.launch(debug=True, share=kwargs.get("share", False), **kwargs)
__all__ = ["stream_to_gradio", "GradioUI"] |