File size: 12,025 Bytes
7a223e7
6adb0d1
 
 
 
 
 
b2c3eed
6adb0d1
d0f68bc
6adb0d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67828bb
648d955
 
5417a1b
 
 
 
9d217be
 
 
 
5417a1b
 
 
9d217be
 
 
 
 
 
 
 
5417a1b
 
9d217be
 
5417a1b
 
 
9d217be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ea7e69
648d955
 
 
 
 
 
 
7a223e7
ebf43f7
 
 
 
 
 
 
 
09fa344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f68bc
7124c40
d0f68bc
67828bb
 
d337d91
03c79df
 
c4f48f9
67828bb
03c79df
c4f48f9
 
 
685777c
 
d337d91
d0f68bc
265325a
d0f68bc
 
7493a71
d0f68bc
09fa344
 
d0723fe
7493a71
c4f48f9
648d955
c4521a7
c4f48f9
 
648d955
c4f48f9
ff8787b
 
c4f48f9
09fa344
 
 
 
 
 
 
 
 
 
4fd163f
 
 
 
 
 
 
 
 
b2c3eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53d17a4
 
 
 
 
 
b2c3eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692229b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import streamlit as st
import os
import torch
#import math
import numpy as np
#import matplotlib.pyplot as plt
#import pathlib
from AtomLenz import *
#from utils_graph import *
from Object_Smiles import Objects_Smiles 

#from robust_detection import wandb_config
from robust_detection import utils
from robust_detection.models.rcnn import RCNN
from robust_detection.data_utils.rcnn_data_utils import Objects_RCNN, COCO_RCNN

import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.loggers import CSVLogger
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.callbacks import LearningRateMonitor
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import DataStructs
from PIL import Image
import matplotlib.pyplot as plt

def main_page(top_n, model_path):
        st.markdown(
                    """test                         """
                                                        )

#### TRYOUT MENU #####

page_names_to_funcs = {
   # "Microscopy images from a molecule": images_from_molecule,
   # "Molecules from a microscopy image": molecules_from_image,
    "About AtomLenz": main_page,
   
}

selected_page = st.sidebar.selectbox("What would you like to retrieve?", page_names_to_funcs.keys())
st.sidebar.markdown('')


selected_model = st.sidebar.selectbox(
                "Select a AtomLenz model to load",
                ("AtomLenz trained on synthetic data (default)", "AtomLenz for hand-drawn images", "ChemExpert (not available yet)"))

model_dict = {
    "AtomLenz trained on synthetic data (default)" : "atomlenz_default.pt",
    "AtomLenz for hand-drawn images" : "atomlenz_handdrawn.pt",
    "ChemExpert (not available yet)" : "atomlenz_default.pt"

}

model_file = model_dict[selected_model]
model_path = os.path.join(datapath, model_file)

if model_path.endswith("320).pt"):
    image_resolution = 320
else: 
    image_resolution = 520


#page_names_to_funcs[selected_page](n_objects, model_path)




######################









colors = ["magenta", "green", "blue", "red", "orange", "magenta", "peru", "azure", "slateblue", "plum","magenta", "green", "blue", "red", "orange", "magenta", "peru", "azure", "slateblue", "plum"]
def plot_bbox(bbox_XYXY, label):
    xmin, ymin, xmax, ymax =bbox_XYXY
    plt.plot(
        [xmin, xmin, xmax, xmax, xmin],
        [ymin, ymax, ymax, ymin, ymin],
        color=colors[label],
        label=str(label))

model_cls = RCNN
experiment_path_atoms="./models/atoms_model/"
dir_list = os.listdir(experiment_path_atoms)
dir_list = [os.path.join(experiment_path_atoms,f) for f in dir_list]
dir_list.sort(key=os.path.getctime, reverse=True)
checkpoint_file_atoms = [f for f in dir_list if "ckpt" in f][0]
model_atom = model_cls.load_from_checkpoint(checkpoint_file_atoms)
model_atom.model.roi_heads.score_thresh = 0.65 
experiment_path_bonds = "./models/bonds_model/"
dir_list = os.listdir(experiment_path_bonds)
dir_list = [os.path.join(experiment_path_bonds,f) for f in dir_list]
dir_list.sort(key=os.path.getctime, reverse=True)
checkpoint_file_bonds = [f for f in dir_list if "ckpt" in f][0]
model_bond = model_cls.load_from_checkpoint(checkpoint_file_bonds)
model_bond.model.roi_heads.score_thresh = 0.65
experiment_path_stereo = "./models/stereos_model/"
dir_list = os.listdir(experiment_path_stereo)
dir_list = [os.path.join(experiment_path_stereo,f) for f in dir_list]
dir_list.sort(key=os.path.getctime, reverse=True)
checkpoint_file_stereo = [f for f in dir_list if "ckpt" in f][0]
model_stereo = model_cls.load_from_checkpoint(checkpoint_file_stereo)
model_stereo.model.roi_heads.score_thresh = 0.65
experiment_path_charges = "./models/charges_model/"
dir_list = os.listdir(experiment_path_charges)
dir_list = [os.path.join(experiment_path_charges,f) for f in dir_list]
dir_list.sort(key=os.path.getctime, reverse=True)
checkpoint_file_charges = [f for f in dir_list if "ckpt" in f][0]
model_charge = model_cls.load_from_checkpoint(checkpoint_file_charges)
model_charge.model.roi_heads.score_thresh = 0.65

data_cls = Objects_Smiles
dataset = data_cls(data_path="./uploads/", batch_size=1)
#    dataset.prepare_data()
st.title("Atom Level Entity Detector")

image_file = st.file_uploader("Upload a chemical structure candidate image",type=['png'])
#st.write('filename is', file_name)
if image_file is not None:
   #col1, col2 = st.columns(2)

   image = Image.open(image_file)
   #col1.image(image, use_column_width=True)
   st.image(image, use_column_width=True)
   col1, col2 = st.columns(2)
   if not os.path.exists("uploads/images"):
       os.makedirs("uploads/images")
   with open(os.path.join("uploads/images/","0.png"),"wb") as f: 
        f.write(image_file.getbuffer()) 
   #st.success("Saved File")
   dataset.prepare_data()
   trainer = pl.Trainer(logger=False)
   st.toast('Predicting atoms,bonds,charges,..., please wait')
   atom_preds = trainer.predict(model_atom, dataset.test_dataloader())
   bond_preds = trainer.predict(model_bond, dataset.test_dataloader())
   stereo_preds = trainer.predict(model_stereo, dataset.test_dataloader())
   charges_preds = trainer.predict(model_charge, dataset.test_dataloader())
   st.toast('Done')
   #st.write(atom_preds)
   plt.imshow(image, cmap="gray")
   for bbox, label in zip(atom_preds[0]['boxes'][0], atom_preds[0]['preds'][0]):
      # st.write(bbox)
      # st.write(label)
       plot_bbox(bbox, label)
   plt.axis('off')
   plt.savefig("example_image.png",bbox_inches='tight', pad_inches=0)
   image_vis = Image.open("example_image.png")
   col1.image(image_vis, use_column_width=True)
   plt.clf()
   plt.imshow(image, cmap="gray")
   for bbox, label in zip(bond_preds[0]['boxes'][0], bond_preds[0]['preds'][0]):
      # st.write(bbox)
      # st.write(label)
       plot_bbox(bbox, label)
   plt.axis('off')
   plt.savefig("example_image.png",bbox_inches='tight', pad_inches=0)
   image_vis = Image.open("example_image.png")
   col2.image(image_vis, use_column_width=True)
   mol_graphs = []
   count_bonds_preds = np.zeros(4)
   count_atoms_preds = np.zeros(15)
   correct=0
   correct_objects=0
   correct_both=0
   predictions=0
   tanimoto_dists=[]
   predictions_list = []
   for image_idx, bonds in enumerate(bond_preds):
        count_bonds_preds = np.zeros(8)
        count_atoms_preds = np.zeros(18)
        atom_boxes = atom_preds[image_idx]['boxes'][0]
        atom_labels = atom_preds[image_idx]['preds'][0]
        atom_scores = atom_preds[image_idx]['scores'][0]
        charge_boxes = charges_preds[image_idx]['boxes'][0]
        charge_labels = charges_preds[image_idx]['preds'][0]
        charge_mask=torch.where(charge_labels>1)
        filtered_ch_labels=charge_labels[charge_mask]
        filtered_ch_boxes=charge_boxes[charge_mask]
        #import ipdb; ipdb.set_trace()
        filtered_bboxes, filtered_labels = iou_filter_bboxes(atom_boxes, atom_labels, atom_scores)
        #for atom_label in filtered_labels:
        #    count_atoms_preds[atom_label] += 1
        #import ipdb; ipdb.set_trace()
        mol_graph = np.zeros((len(filtered_bboxes),len(filtered_bboxes)))
        stereo_atoms = np.zeros(len(filtered_bboxes))
        charge_atoms = np.ones(len(filtered_bboxes))
        for index,box_atom in enumerate(filtered_bboxes):
            for box_charge,label_charge in zip(filtered_ch_boxes,filtered_ch_labels):
                if bb_box_intersects(box_atom,box_charge) == 1:
                    charge_atoms[index]=label_charge
            
        for bond_idx, bond_box in enumerate(bonds['boxes'][0]):
            label_bond = bonds['preds'][0][bond_idx]
            if label_bond > 1:
              try:
                 count_bonds_preds[label_bond] += 1
              except:
                 count_bonds_preds=count_bonds_preds 
               #import ipdb; ipdb.set_trace()
              result = []
              limit = 0
            #TODO: values of 50 and 5 should be made dependent of mean size of atom_boxes
              while result.count(1) < 2 and limit < 80:
                 result=[]
                 bigger_bond_box = [bond_box[0]-limit,bond_box[1]-limit,bond_box[2]+limit,bond_box[3]+limit]
                 for atom_box in filtered_bboxes:
                     result.append(bb_box_intersects(atom_box,bigger_bond_box))
                 limit+=5
              indices = [i for i, x in enumerate(result) if x == 1]
              if len(indices) == 2:
               #import ipdb; ipdb.set_trace()
                 mol_graph[indices[0],indices[1]]=label_bond
                 mol_graph[indices[1],indices[0]]=label_bond
              if len(indices) > 2:
                #we have more then two canidate atoms for one bond, we filter ...
                  cand_bboxes = filtered_bboxes[indices,:]
                  cand_indices = dist_filter_bboxes(cand_bboxes)
                #import ipdb; ipdb.set_trace()
                  mol_graph[indices[cand_indices[0]],indices[cand_indices[1]]]=label_bond
                  mol_graph[indices[cand_indices[1]],indices[cand_indices[0]]]=label_bond
                  #print("more than 2 indices")
              #if len(indices) < 2:
              #    print("less than 2 indices")
                #import ipdb; ipdb.set_trace()
 #           else:
 #             result=[]
 #             for atom_box in filtered_bboxes:
 #                 result.append(bb_box_intersects(atom_box,bond_box))
 #             indices = [i for i, x in enumerate(result) if x == 1]
 #             if len(indices) == 1:
 #                stereo_atoms[indices[0]]=label_bond
        stereo_bonds = np.where(mol_graph>4, True, False)
        if np.any(stereo_bonds):
           stereo_boxes = stereo_preds[image_idx]['boxes'][0]
           stereo_labels= stereo_preds[image_idx]['preds'][0]
           for stereo_box in stereo_boxes:
               result=[]
               for atom_box in filtered_bboxes:
                   result.append(bb_box_intersects(atom_box,stereo_box))
               indices = [i for i, x in enumerate(result) if x == 1]
               if len(indices) == 1:
                   stereo_atoms[indices[0]]=1
               
        molecule = dict()
        molecule['graph'] = mol_graph
        #molecule['atom_labels'] = atom_preds[image_idx]['preds'][0]
        molecule['atom_labels'] = filtered_labels
        molecule['atom_boxes'] = filtered_bboxes
        molecule['stereo_atoms'] = stereo_atoms
        molecule['charge_atoms'] = charge_atoms
        mol_graphs.append(molecule)
        #base_path="./"
        #base_path = pathlib.Path(args.data_path)
        #image_dir = base_path.joinpath("images")
        #smiles_dir = base_path.joinpath("smiles")
        #impath = image_dir.joinpath(f"{image_idx}.png")
        #smilespath = smiles_dir.joinpath(f"{image_idx}.txt")
        save_mol_to_file(molecule,'molfile')
        mol =  Chem.MolFromMolFile('molfile',sanitize=False)
        problematic = 0
        try:
          problems = Chem.DetectChemistryProblems(mol)
          if len(problems) > 0:
             mol = solve_mol_problems(mol,problems)
             problematic = 1
           #import ipdb; ipdb.set_trace()
          try:
            Chem.SanitizeMol(mol) 
          except:
            problems = Chem.DetectChemistryProblems(mol)
            if len(problems) > 0:
              mol = solve_mol_problems(mol,problems)
            try:
              Chem.SanitizeMol(mol)
            except:
              pass
        except:
          problematic = 1
        try:
          pred_smiles = Chem.MolToSmiles(mol)
        except:
          pred_smiles = ""
          problematic = 1
        predictions+=1
        predictions_list.append([image_idx,pred_smiles,problematic])
                #import ipdb; ipdb.set_trace()
   file_preds = open('preds_atomlenz','w')
   for pred in predictions_list:
        print(pred)
#x = st.slider('Select a value')
#st.write(x, 'squared is', x * x)