Spaces:
Sleeping
Sleeping
File size: 5,406 Bytes
d3830cc e24f20d 98186a7 d3830cc 98186a7 98087f5 850d1e7 b2fc1de 98186a7 b2fc1de 98186a7 b2fc1de 98186a7 faf7c96 98186a7 b2fc1de d3830cc 98186a7 d3830cc 98186a7 d3830cc 98186a7 d3830cc 98186a7 b6ba0df 98186a7 b6ba0df d3830cc 98186a7 d3830cc 98186a7 d3830cc 3055a8f d3830cc 3055a8f d3830cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
"""
python interactive.py
"""
import torch
from transformers import AutoTokenizer, BertForSequenceClassification, AutoModelForSequenceClassification, AutoConfig
from transformers import TextClassificationPipeline
import gradio as gr
# global var
MODEL_NAME = 'momo/KcBERT-base_Hate_speech_Privacy_Detection'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(
MODEL_NAME,
num_labels= 15,
problem_type="multi_label_classification"
)
# config = AutoConfig.from_pretrained(MODEL_NAME)
MODEL_BUF = {
"name": MODEL_NAME,
"tokenizer": tokenizer,
"model": model,
# "config": config
}
def change_model_name(name):
MODEL_BUF["name"] = name
MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name)
MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name)
# MODEL_BUF["config"] = AutoConfig.from_pretrained(name)
def predict(model_name, text):
if model_name != MODEL_BUF["name"]:
change_model_name(model_name)
tokenizer = MODEL_BUF["tokenizer"]
model = MODEL_BUF["model"]
# config = MODEL_BUF["config"]
unsmile_labels = ["์ฌ์ฑ/๊ฐ์กฑ","๋จ์ฑ","์ฑ์์์","์ธ์ข
/๊ตญ์ ","์ฐ๋ น","์ง์ญ","์ข
๊ต","๊ธฐํ ํ์ค","์
ํ/์์ค","clean", 'name', 'number', 'address', 'bank', 'person']
num_labels = len(unsmile_labels)
model.config.id2label = {i: label for i, label in zip(range(num_labels), unsmile_labels)}
model.config.label2id = {label: i for i, label in zip(range(num_labels), unsmile_labels)}
pipe = TextClassificationPipeline(
model = model,
tokenizer = tokenizer,
return_all_scores=True,
function_to_apply='sigmoid'
)
for result in pipe(text)[0]:
output = result
return output
if __name__ == '__main__':
text = '์ฟ๋ด๊ฑธ ํ๋ณฟ๊ธ ์ฟ๋๊ณญ ์์ ฉ๋๊ณ ์์์๋ฉ'
model_name_list = [
'momo/KcELECTRA-base_Hate_speech_Privacy_Detection',
"momo/KcBERT-base_Hate_speech_Privacy_Detection",
]
# #Create a gradio app with a button that calls predict()
# app = gr.Interface(
# fn=predict,
# inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs=['label'],
# examples = [[MODEL_BUF["name"], text], [MODEL_BUF["name"], "4=๐ฆ 4โ ๐ฆ"]],
# title="ํ๊ตญ์ด ํ์คํํ, ๊ฐ์ธ์ ๋ณด ํ๋ณ๊ธฐ (Korean Hate Speech and Privacy Detection)",
# description="Korean Hate Speech and Privacy Detection."
# )
# app.launch()
pipe = TextClassificationPipeline(
model = model,
tokenizer = tokenizer,
return_all_scores=True,
function_to_apply='sigmoid'
)
gr.Interface.from_pipeline(pipe).launch()
# # global var
# MODEL_NAME = 'jason9693/SoongsilBERT-base-beep'
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
# config = AutoConfig.from_pretrained(MODEL_NAME)
# MODEL_BUF = {
# "name": MODEL_NAME,
# "tokenizer": tokenizer,
# "model": model,
# "config": config
# }
# def change_model_name(name):
# MODEL_BUF["name"] = name
# MODEL_BUF["tokenizer"] = AutoTokenizer.from_pretrained(name)
# MODEL_BUF["model"] = AutoModelForSequenceClassification.from_pretrained(name)
# MODEL_BUF["config"] = AutoConfig.from_pretrained(name)
# def predict(model_name, text):
# if model_name != MODEL_BUF["name"]:
# change_model_name(model_name)
# tokenizer = MODEL_BUF["tokenizer"]
# model = MODEL_BUF["model"]
# config = MODEL_BUF["config"]
# tokenized_text = tokenizer([text], return_tensors='pt')
# input_tokens = tokenizer.convert_ids_to_tokens(tokenized_text.input_ids[0])
# try:
# input_tokens = util.bytetokens_to_unicdode(input_tokens) if config.model_type in ['roberta', 'gpt', 'gpt2'] else input_tokens
# except KeyError:
# input_tokens = input_tokens
# model.eval()
# output, attention = model(**tokenized_text, output_attentions=True, return_dict=False)
# output = F.softmax(output, dim=-1)
# result = {}
# for idx, label in enumerate(output[0].detach().numpy()):
# result[config.id2label[idx]] = float(label)
# fig = visualize_attention(input_tokens, attention[0][0].detach().numpy())
# return result, fig#.logits.detach()#.numpy()#, output.attentions.detach().numpy()
# if __name__ == '__main__':
# text = '์ฟ๋ด๊ฑธ ํ๋ณฟ๊ธ ์ฟ๋๊ณญ ์์ ฉ๋๊ณ ์์์๋ฉ'
# model_name_list = [
# 'jason9693/SoongsilBERT-base-beep',
# "beomi/beep-klue-roberta-base-hate",
# "beomi/beep-koelectra-base-v3-discriminator-hate",
# "beomi/beep-KcELECTRA-base-hate"
# ]
# #Create a gradio app with a button that calls predict()
# app = gr.Interface(
# fn=predict,
# inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs=['label', 'plot'],
# examples = [[MODEL_BUF["name"], text], [MODEL_BUF["name"], "4=๐ฆ 4โ ๐ฆ"]],
# title="ํ๊ตญ์ด ํ์ค์ฑ ๋ฐํ ๋ถ๋ฅ๊ธฐ (Korean Hate Speech Classifier)",
# description="Korean Hate Speech Classifier with Several Pretrained LM\nCurrent Supported Model:\n1. SoongsilBERT\n2. KcBERT(+KLUE)\n3. KcELECTRA\n4.KoELECTRA."
# )
# app.launch(inline=False) |