Spaces:
Sleeping
Sleeping
File size: 10,813 Bytes
61c89cd e21a983 a99276a e21a983 61c89cd 16f2307 06d3f6e e21a983 a99276a e21a983 7985d5f 455379c 7985d5f 61c89cd 9d3a848 61c89cd a99276a 552490f 562b4d5 a1e8f93 562b4d5 bb70c22 0fc6336 1b7ec1b 552490f 6d89f09 aaacefd 01cfb27 6d89f09 bb70c22 73b6943 562b4d5 552490f 70f75dc 552490f 7985d5f 552490f 61c89cd fc523d1 084f948 a00bc49 d849b8e 20bb366 c6d02b3 9f1f2bf 1d16cc9 9f1f2bf c6d02b3 2c7ffe4 a597e6b fd34825 706151f 084f948 84291d5 7206ba2 a597e6b 48e1ac1 084f948 f2fa35d d849b8e 83d3e5a 61c89cd fc523d1 a99276a b4f9b4b 61c89cd a99276a 843e793 0fc6336 455379c a99276a 7219c3f b3bfe09 1b7ec1b b3bfe09 a99276a 1eb986b 3f070dc b7e54fe b3bfe09 455379c b3bfe09 b7e54fe b3bfe09 b7e54fe 9a43a98 455379c b3bfe09 84810a2 b3bfe09 bb63a49 84810a2 378fec2 cde99b9 9642724 843e793 455379c 843e793 a99276a 843e793 a99276a 091a4dd 843e793 091a4dd 843e793 091a4dd 843e793 fc523d1 843e793 455379c 843e793 455379c 843e793 455379c 86f936d f94caf3 455379c f94caf3 455379c f94caf3 455379c f94caf3 455379c f94caf3 455379c f94caf3 455379c f94caf3 843e793 f94caf3 455379c f94caf3 9a43a98 f94caf3 59db4bc 843e793 455379c 1d0d2c1 0a5161c 455379c 5930a22 27a4916 7985d5f 843e793 455379c 552490f e13a4c7 843e793 e13a4c7 61c89cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# built-in
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits
import requests
import sys
import warnings
# external
#import spaces
import torch
import gradio as gr
from numpy import array
from lxml.html import fromstring
#from transformers import pipeline
#from diffusers.pipelines.flux import FluxPipeline
from diffusers.utils import export_to_gif, load_image
from diffusers.models.modeling_utils import ModelMixin
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
#import jax
#import jax.numpy as jnp
from numba import cuda, njit as cpu, void, int64 as int, float64 as float, boolean as bool
from numba.cuda import jit as gpu, grid
from numba.types import unicode_type as string
# logging
warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.DEBUG)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)
handler2 = logging.StreamHandler(sys.stderr)
handler2.setLevel(logging.DEBUG)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler2.setFormatter(formatter)
root.addHandler(handler2)
# data
last_motion=array([""],dtype=string)
dtype = torch.float16
device = "cuda"
#repo = "ByteDance/AnimateDiff-Lightning"
#ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
base = "emilianJR/epiCRealism"
#base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype)
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)
fast=True
fps=10
time=1
width=384
height=768
step=40
accu=10
css="""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
width: 100%;
text-align: center;
}
footer {
display: none !important;
}
#col-container {
margin: 0 auto;
max-width: 15cm;
}
.image-container {
aspect-ratio: """+str(width)+"/"+str(height)+""" !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(>.btn) {
display: flex;
justify-content: space-evenly;
align-items: center;
}
.btn {
display: flex;
}
"""
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","38")
document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""
# functionality
def run(cmd):
return str(subprocess.run(cmd, shell=True, capture_output=True, env=None).stdout)
def xpath_finder(str,pattern):
try:
return ""+fromstring(str).xpath(pattern)[0].text_content().lower().strip()
except:
return ""
def translate(text,lang):
if text == None or lang == None:
return ""
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
if text == "" or lang == "":
return ""
if len(text) > 38:
raise Exception("Translation Error: Too long text!")
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
query_text = f'Please translate {padded_chars}, into {lang}'
url = f'https://www.google.com/search?q={query_text}'
content = str(requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
).content)
translated = text
src_lang = xpath_finder(content,'//*[@class="source-language"]')
trgt_lang = xpath_finder(content,'//*[@class="target-language"]')
src_text = xpath_finder(content,'//*[@id="tw-source-text"]/*')
trgt_text = xpath_finder(content,'//*[@id="tw-target-text"]/*')
if trgt_lang == lang:
translated = trgt_text
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
print(ret)
return ret
def generate_random_string(length):
characters = str(ascii_letters + digits)
return ''.join(random.choice(characters) for _ in range(length))
@gpu(void())
def calc():
x = grid(1)
if last_motion[0] != inp[3]:
pipe.unload_lora_weights()
if inp[3] != "":
pipe.load_lora_weights(inp[3], adapter_name="motion")
pipe.fuse_lora()
pipe.set_adapters([3], [0.7])
last_motion[0] = inp[3]
pipe.to(device,dtype)
if inp[2]=="":
out[x] = pipe(
prompt=inp[1],
height=height,
width=width,
ip_adapter_image=inp[0].convert("RGB").resize((width,height)),
num_inference_steps=step,
guidance_scale=accu,
num_frames=(fps*time)
)
out[x] = pipe(
prompt=inp[1],
negative_prompt=inp[2],
height=height,
width=width,
ip_adapter_image=inp[0].convert("RGB").resize((width,height)),
num_inference_steps=step,
guidance_scale=accu,
num_frames=(fps*time)
)
def handle(*args):
global inp
global out
inp = array(args, dtype=)
out = array([],dtype=string)
inp[1] = translate(inp[1],"english")
inp[2] = translate(inp[2],"english")
if inp[0] == None:
return None
if inp[2] != "":
inp[2] = f"{inp[2]} where in the image"
_do = ['photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable', "natural", 'rough', 'best quality', 'focused', "highly detailed"]
if inp[1] != "":
_do.append(f"a new {inp[1]} content in the image")
inp[1] = ", ".join(_do)
ln = len(result)
calc[ln,32]()
for i in range(ln):
name = generate_random_string[1,32](12)+".png"
export_to_gif(out[i].frames[0],name,fps=fps)
out[i] = name
return out
def ui():
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# MULTI-LANGUAGE IMAGE GENERATOR
""")
with gr.Row():
global img
img = gr.Image(label="STATIC PHOTO",show_label=True,container=True,type="pil")
with gr.Row():
global prompt
prompt = gr.Textbox(
elem_id="prompt",
placeholder="INCLUDE",
container=False,
max_lines=1
)
with gr.Row():
global prompt2
prompt2 = gr.Textbox(
elem_id="prompt2",
placeholder="EXCLUDE",
container=False,
max_lines=1
)
with gr.Row():
global motion
motion = gr.Dropdown(
label='CAMERA',
show_label=True,
container=True,
choices=[
("(No Effect)", ""),
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
],
value="",
interactive=True
)
with gr.Row():
global run_button
run_button = gr.Button("START",elem_classes="btn",scale=0)
with gr.Row():
global result
result = []
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
demo.queue().launch()
@gpu(void())
def pre():
global pipe
pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe.scheduler = DDIMScheduler(
clip_sample=False,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="linear",
timestep_spacing="trailing",
steps_offset=1
)
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipe.enable_vae_slicing()
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
@gpu(void())
def events():
gr.on(
triggers=[
run_button.click,
prompt.submit,
prompt2.submit
],
fn=handle,
input=[img,prompt,prompt2,motion],
output=result
)
def entry():
os.chdir(os.path.abspath(os.path.dirname(__file__)))
pre[1,32]()
ui()
events[1,32]()
# entry
entry()
# end
|