File size: 7,999 Bytes
61c89cd
 
 
4deddd3
e21a983
 
 
 
 
9c588a7
e21a983
 
 
fb14070
 
8faa958
61c89cd
 
 
fb4e2c7
06d3f6e
e21a983
6db6a8d
e21a983
169516c
e21a983
 
e611e71
70bd56f
6db6a8d
61c89cd
 
9d3a848
 
302bc3b
b32fdcf
302bc3b
9d3a848
 
 
 
6db6a8d
 
205077f
 
 
 
b32fdcf
e453455
552490f
239a40a
 
c2185df
239a40a
6db6a8d
 
965e92d
13aff24
7e211bb
13aff24
e453455
f1deaa5
 
13aff24
562b4d5
6db6a8d
 
3b90fe5
552490f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b90fe5
552490f
 
 
 
 
 
 
 
 
 
 
 
3b90fe5
7985d5f
552490f
 
fef1dcd
 
 
 
a5c674b
fef1dcd
 
 
 
fb4e2c7
fef1dcd
 
 
 
a5c674b
fef1dcd
 
 
 
552490f
 
 
688d8e9
e7348c9
fe55e41
 
 
 
 
 
ffe6ef9
fe55e41
ffe6ef9
fe55e41
13aff24
e611e71
 
 
f031971
3e4f13d
 
fe55e41
e7348c9
fb14070
98ac56e
fc523d1
a99276a
b4f9b4b
b8d8aa1
7e211bb
657170e
8a2ea7d
 
b32fdcf
 
8a2ea7d
b32fdcf
8a2ea7d
 
f1deaa5
b32fdcf
e7149a6
8a2ea7d
3aaecd5
8a2ea7d
c2185df
8a2ea7d
169516c
1142cdf
f1deaa5
7e211bb
a8e1c8c
169516c
 
7e211bb
7f19912
c2185df
 
169516c
b32fdcf
 
 
169516c
8a2ea7d
65d8433
169516c
e7149a6
f1deaa5
169516c
efcf006
 
b32fdcf
8a2ea7d
b32fdcf
4afc319
c2185df
 
b32fdcf
6db6a8d
fef1dcd
 
091a4dd
1c7f27b
a5c674b
fc523d1
13aff24
b32fdcf
1c7f27b
a5c674b
4a033c0
13aff24
b32fdcf
 
 
eebdd59
 
 
b32fdcf
 
843e793
72683cf
4deddd3
6ad2af8
657170e
6dbaba7
72683cf
169516c
6ad2af8
085f347
e515cf0
c2185df
86f936d
f94caf3
239a40a
6ad2af8
762a623
fb4e2c7
762a623
43f45da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb4e2c7
43f45da
fb4e2c7
e7149a6
43f45da
1a51e72
762a623
43f45da
 
 
 
 
b32fdcf
 
b7b18e5
b43b190
 
 
 
 
 
4afc319
657170e
e515cf0
b43b190
f94caf3
 
b43b190
455379c
b43b190
27a4916
843e793
e13a4c7
b32fdcf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

# built-in

from inspect import signature
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits, punctuation
import requests
import sys
import warnings
import time
import asyncio
from functools import partial

# external

import spaces
import torch
import gradio as gr
from numpy import asarray as array
from lxml.html import fromstring
from diffusers.utils import export_to_video, load_image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import FluxPipeline, CogVideoXImageToVideoPipeline
from PIL import Image, ImageDraw, ImageFont

# logging

warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.WARN)
handler = logging.StreamHandler(sys.stderr)
handler.setLevel(logging.WARN)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)

# constant data

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

base = "black-forest-labs/FLUX.1-schnell"

# variable data

additional_image = None

# precision data

seq=512
fps=15
width=768
height=512
image_steps=8
video_steps=50
img_accu=9
vid_accu=7

# ui data

css="".join(["""
input, input::placeholder {
    text-align: center !important;
}
*, *::placeholder {
    font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
    width: 100%;
    text-align: center;
}
footer {
    display: none !important;
}
#col-container {
    margin: 0 auto;
}
.image-container {
    aspect-ratio: """,str(width),"/",str(height),""" !important;
}
.dropdown-arrow {
    display: none !important;
}
*:has(>.btn) {
    display: flex;
    justify-content: space-evenly;
    align-items: center;
}
.btn {
    display: flex;
}
"""])

js="""
function custom(){
    document.querySelector("div#prompt input").addEventListener("keydown",function(e){
        e.target.setAttribute("last_value",e.target.value);
    });
    document.querySelector("div#prompt input").addEventListener("input",function(e){
        if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){
            e.target.value = e.target.getAttribute("last_value");
            e.target.removeAttribute("last_value");
        }
    });

    document.querySelector("div#prompt2 input").addEventListener("keydown",function(e){
        e.target.setAttribute("last_value",e.target.value);
    });
    document.querySelector("div#prompt2 input").addEventListener("input",function(e){
        if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){
            e.target.value = e.target.getAttribute("last_value");
            e.target.removeAttribute("last_value");
        }
    });
}
"""

# torch pipes

def disabled_safety_checker(images, clip_input):
    if len(images.shape)==4:
        num_images = images.shape[0]
        return images, [False]*num_images
    else:
        return images, False

image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
image_pipe.enable_model_cpu_offload()
image_pipe.safety_checker = disabled_safety_checker

video_pipe = CogVideoXImageToVideoPipeline.from_pretrained(
    "THUDM/CogVideoX-5b-I2V",
    torch_dtype=torch.bfloat16
).to(device)
video_pipe.vae.enable_tiling()
video_pipe.vae.enable_slicing()
video_pipe.safety_checker = disabled_safety_checker

# functionality

def generate_random_string(length):
    characters = str(ascii_letters + digits)
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(duration=80)
def pipe_generate(img,p1,p2,time,title):
    global pipe

    if img is None:
        img = image_pipe(
            prompt=p1,
            negative_prompt=p2,
            height=height,
            width=width,
            guidance_scale=img_accu,
            num_images_per_prompt=1,
            num_inference_steps=image_steps,
            max_sequence_length=seq,
            generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
        ).images[0]
        additional_image = True

    if title != "":
        draw = ImageDraw.Draw(img)
        textheight=min(( width // 10 ), ( height // 5 ))
        rows = 1
        font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
        textwidth = draw.textlength(title,font)
        x = (width - textwidth) // 2
        y = (height - (textheight * rows // 2)) // 2
        draw.text((x, y), title, (255,255,255), font=font)

    additional_image = img if additional_image else None
    
    if time == 0.0:
        return img

    return video_pipe(
        prompt=p1,
        negative_prompt=p2.replace("textual content, ",""),
        image=img,
        num_inference_steps=video_steps,
        guidance_scale=vid_accu,
        num_videos_per_prompt=1,
        num_frames=(fps*time),
        generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
    ).frames[0]

def handle_generate(*_inp):

    additional_image = None

    inp = list(_inp)
    
    #inp[1] = translate(inp[1],"english")
    #inp[2] = translate(inp[2],"english")

    if len(inp[2]) >= 2:
        inp[2] = "," + inp[2].strip(",").strip(" ")

    inp[2] = f"textual,labeled,divined,distorted,discontinuous,ugly,blurry,low resolution,motionless,static,wrong body anatomy{inp[2]}"

    if len(inp[1]) >= 2:
        inp[1] = "," + inp[1].strip(",").strip(" ")
    
    inp[1] = f'realistic,natural,genuine,reasonable,highly detailed{inp[1]}'

    print(f"""

        Positive: {inp[1]}

        Negative: {inp[2]}

    """)
    
    pipe_out = pipe_generate(*inp)
    
    name = generate_random_string(12) + ( ".png" if inp[3] == 0.0 else ".mp4" )
    if inp[3] == 0.0:
        pipe_out.save(name)
    else:
        export_to_video(pipe_out,name,fps=fps)
    if inp[3] == 0.0:
        return name, None
    else:
        return additional_image, name

def ui():
    global result
    with gr.Blocks(theme=gr.themes.Citrus(),css=css,js=js) as demo:
        gr.Markdown(f"""
            # Photo Motion - PNG/MP4 Generator
        """)
        with gr.Row():
            title = gr.Textbox(
                placeholder="Logo title",
                container=False,
                max_lines=1
            )
            prompt = gr.Textbox(
                elem_id="prompt",
                placeholder="Included keywords",
                container=False,
                max_lines=1
            )
        with gr.Row():
            prompt2 = gr.Textbox(
                elem_id="prompt2",
                placeholder="Excluded keywords",
                container=False,
                max_lines=1
            )
        with gr.Row():
            time = gr.Slider(
                minimum=0.0,
                maximum=3.0,
                value=0.0,
                step=1.0,
                label="Duration (0s = PNG)"
            )
        with gr.Row(elem_id="col-container"):
            with gr.Column():
                img = gr.Image(label="Upload photo",show_label=True,container=False,type="pil")
            with gr.Column():
                res_img = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
            with gr.Column():
                res_vid = gr.Video(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, show_share_button=False)
        with gr.Row():
            run_button = gr.Button("Start!",elem_classes="btn",scale=0)

        gr.on(
            triggers=[
                run_button.click,
                prompt.submit,
                prompt2.submit
            ],
            fn=handle_generate,
            inputs=[img,prompt,prompt2,time,title],
            outputs=[res_img,res_vid]
        )
        demo.queue().launch()

# entry

if __name__ == "__main__":
    os.chdir(os.path.abspath(os.path.dirname(__file__)))
    ui()

# end