Spaces:
Running
Running
File size: 11,500 Bytes
61c89cd 4deddd3 e21a983 9c588a7 e21a983 fb14070 8faa958 61c89cd 06d3f6e e21a983 6db6a8d e21a983 b32fdcf 70bd56f 6db6a8d 61c89cd 9d3a848 b32fdcf 9d3a848 6db6a8d 205077f 76ec6ef 205077f 76ec6ef b32fdcf a0f86a3 1b7ec1b 552490f 239a40a 6db6a8d 688d8e9 76ec6ef 89af836 4a033c0 562b4d5 6db6a8d 3b90fe5 552490f 3b90fe5 552490f 3b90fe5 7985d5f 552490f 688d8e9 e7348c9 b32fdcf 24869b8 e7348c9 24869b8 e7348c9 7d100e0 e7348c9 fb14070 98ac56e fc523d1 084f948 a00bc49 d849b8e 20bb366 c6d02b3 9f1f2bf b32fdcf c6d02b3 2c7ffe4 a597e6b b32fdcf fd34825 706151f 084f948 84291d5 7206ba2 a597e6b 48e1ac1 084f948 f2fa35d d849b8e b32fdcf 83d3e5a 61c89cd fc523d1 a99276a b4f9b4b b8d8aa1 b32fdcf 8a2ea7d b32fdcf 8a2ea7d b32fdcf 8a2ea7d b32fdcf 8a2ea7d b32fdcf 3aaecd5 8a2ea7d b32fdcf 8a2ea7d b32fdcf 8a2ea7d b32fdcf 4afc319 b32fdcf 6db6a8d 843e793 091a4dd 843e793 eebdd59 fc523d1 53d4500 b32fdcf 843e793 eebdd59 4a033c0 53d4500 b32fdcf eebdd59 b32fdcf 843e793 72683cf 4deddd3 9480815 eabdfc8 70bd56f 9480815 72683cf 6dbaba7 72683cf 6dbaba7 72683cf 86f936d f94caf3 239a40a f94caf3 762a623 b32fdcf 762a623 b32fdcf 762a623 b32fdcf 762a623 b32fdcf 762a623 f94caf3 3a6781f 762a623 b32fdcf 762a623 b32fdcf 10307b8 b32fdcf 10307b8 b32fdcf 762a623 b32fdcf 762a623 b32fdcf 762a623 72683cf b32fdcf b7b18e5 b43b190 4afc319 b32fdcf b43b190 f94caf3 b43b190 455379c b43b190 27a4916 843e793 e13a4c7 b32fdcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
# built-in
from inspect import signature
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits, punctuation
import requests
import sys
import warnings
import time
import asyncio
from functools import partial
# external
import torch
import gradio as gr
from numpy import asarray as array
from lxml.html import fromstring
from diffusers.utils import export_to_gif, load_image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import AnimateDiffPipeline, MotionAdapter, DDIMScheduler, StableDiffusionPipeline
from PIL import Image, ImageDraw, ImageFont
# logging
warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.DEBUG)
handler = logging.StreamHandler(sys.stderr)
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)
# constant data
if torch.cuda.is_available():
device = "cuda"
dtype = torch.float16
else:
device = "cpu"
dtype = torch.float16
base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)
# variable data
last_motion=""
# precision data
seq=512
fast=True
fps=30
width=896
height=896
step=100
accu=9.0
# ui data
css="".join(["""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
width: 100%;
text-align: center;
}
footer {
display: none !important;
}
#col-container {
margin: 0 auto;
}
.image-container {
aspect-ratio: """,str(width),"/",str(height),""" !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(>.btn) {
display: flex;
justify-content: space-evenly;
align-items: center;
}
.btn {
display: flex;
}
"""])
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","38")
document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""
# torch pipes
image_pipe = StableDiffusionPipeline.from_pretrained(base, torch_dtype=dtype, safety_checker=None).to(device)
pipe = AnimateDiffPipeline.from_pretrained(base, torch_dtype=dtype, motion_adapter=adapter).to(device)
pipe.scheduler = DDIMScheduler(
clip_sample=False,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="linear",
timestep_spacing="trailing",
steps_offset=1
)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
# functionality
def run(cmd):
return str(subprocess.run(cmd, shell=True, capture_output=True, env=None).stdout)
def xpath_finder(str,pattern):
try:
return ""+fromstring(str).xpath(pattern)[0].text_content().lower().strip()
except:
return ""
def translate(text,lang):
if text == None or lang == None:
return ""
text = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', text)).lower().strip()
lang = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', lang)).lower().strip()
if text == "" or lang == "":
return ""
if len(text) > 38:
raise Exception("Translation Error: Too long text!")
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
padded_chars = re.sub("(^-)|(-$)","",text.replace("","-").replace("- -"," ")).strip()
query_text = f'Please translate {padded_chars}, into {lang}'
url = f'https://www.google.com/search?q={query_text}'
content = str(requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
).content)
translated = text
src_lang = xpath_finder(content,'//*[@class="source-language"]')
trgt_lang = xpath_finder(content,'//*[@class="target-language"]')
src_text = xpath_finder(content,'//*[@id="tw-source-text"]/*')
trgt_text = xpath_finder(content,'//*[@id="tw-target-text"]/*')
if trgt_lang == lang:
translated = trgt_text
ret = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', translated)).lower().strip()
return ret
def generate_random_string(length):
characters = str(ascii_letters + digits)
return ''.join(random.choice(characters) for _ in range(length))
def pipe_generate(img,p1,p2,motion,time,title):
global last_motion
global pipe
if img is None:
img = image_pipe(
prompt=p1,
negative_prompt=p2,
height=height,
width=width,
guidance_scale=accu,
num_images_per_prompt=1,
num_inference_steps=step,
max_sequence_length=seq,
need_safetycheck=False,
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
).images[0]
if time == 0.0:
return img
if last_motion != motion:
if last_motion != "":
pipe.unload_lora_weights()
if motion != "":
pipe.load_lora_weights(motion, adapter_name="motion")
pipe.fuse_lora()
pipe.set_adapters("motion", [0.7])
last_motion = motion
return pipe(
prompt=p1,
negative_prompt=p2,
height=height,
width=width,
ip_adapter_image=img.convert("RGB"),
num_inference_steps=step,
guidance_scale=accu,
num_frames=(fps*time)
).frames[0]
def handle_generate(*_inp):
inp = list(_inp)
inp[1] = translate(inp[1],"english")
inp[2] = translate(inp[2],"english")
if inp[2] != "":
inp[2] = " which is related to: " + inp[2] + "."
inp[2] = f"The content which is faked and errored and dreamy and unreal and off topic and pixelated and deformed iris and deformed pupils and semi-realistic and cgi and 3d and render and sketch and cartoon and drawing and anime and cropped and out of frame and worst quality and low quality and jpeg artifacts and ugly and duplicate and weird and morbid and mutilated and extra fingers and mutated hands and poorly drawn hands and poorly drawn face and mutation and deformed and blurry and dehydrated and bad anatomy and bad proportions and extra limbs and cloned face and disfigured and unspecified and gross and proportions and malformed limbs and missing arms and missing legs and extra arms and extra legs and fused fingers and too many fingers and long neck content{inp[2]}"
if inp[1] != "":
inp[1] = " which is related to: " + inp[1] + "."
inp[1] = f'The content which is photographed and realistic and true and genuine and dynamic poze and authentic and deep field and reasonable and natural and best quality and focused and highly detailed content{inp[1]}'
print(f"""
Positive: {inp[1]}
Negative: {inp[2]}
""")
pipe_out = pipe_generate(*inp)
if inp[5] != "":
draw = ImageDraw.Draw(pipe_out)
textheight=32
font = ImageFont.truetype(r"OpenSans-Bold.ttf", textheight)
textwidth = draw.textlength(inp[5])
x = (width - textwidth) // 2
y = (height - textheight) // 2
draw.text((x, y), inp[5],font=font)
name = generate_random_string(12) + ( ".png" if time == 0 else ".gif" )
if inp[4] == 0.0:
pipe_out.save(name)
else:
export_to_gif(pipe_out,name,fps=fps)
return name
def ui():
global result
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
gr.Markdown(f"""
# MULTI-LANGUAGE GIF/PNG CREATOR
""")
with gr.Row(elem_id="col-container"):
with gr.Column():
with gr.Row():
img = gr.Image(label="Upload photo",show_label=True,container=False,type="pil")
with gr.Column(scale=0.66):
with gr.Row():
title = gr.Textbox(
placeholder="Logo title",
container=False,
max_lines=1
)
prompt = gr.Textbox(
elem_id="prompt",
placeholder="Included keywords",
container=False,
max_lines=1
)
with gr.Row():
prompt2 = gr.Textbox(
elem_id="prompt2",
placeholder="Excluded keywords",
container=False,
max_lines=1
)
with gr.Row():
time = gr.Slider(
minimum=0.0,
maximum=600.0,
value=0.0,
step=5.0,
label="GIF/PNG Duration (0s = PNG)"
)
with gr.Row():
motion = gr.Dropdown(
label='GIF camera movement',
show_label=True,
container=False,
choices=[
("(No Effect)", ""),
("Zoom in", "guoyww/#animatediff-motion-lora-zoom-in"),
("Zoom out", "guoyww/#animatediff-motion-lora-zoom-out"),
("Tilt up", "guoyww/#animatediff-motion-lora-tilt-up"),
("Tilt down", "guoyww/#animatediff-motion-lora-tilt-down"),
("Pan left", "guoyww/#animatediff-motion-lora-pan-left"),
("Pan right", "guoyww/#animatediff-motion-lora-pan-right"),
("Roll left", "guoyww/#animatediff-motion-lora-rolling-anticlockwise"),
("Roll right", "guoyww/#animatediff-motion-lora-rolling-clockwise"),
],
value="",
interactive=True
)
with gr.Row():
result = gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
with gr.Row():
run_button = gr.Button("Start!",elem_classes="btn",scale=0)
gr.on(
triggers=[
run_button.click,
prompt.submit,
prompt2.submit
],
fn=handle_generate,
inputs=[img,prompt,prompt2,motion,time,title],
outputs=result
)
demo.queue().launch()
# entry
if __name__ == "__main__":
os.chdir(os.path.abspath(os.path.dirname(__file__)))
ui()
# end |