Spaces:
Sleeping
Sleeping
File size: 6,255 Bytes
b4f9b4b f1052d9 a67a3c8 b4f9b4b 210ed13 95af88e 210ed13 b1328e8 57971cb 210ed13 76b48d0 b4f9b4b ecc81cb 62c5b0c 36185e1 76b48d0 62c5b0c f8fb4da 8d6fc68 210ed13 f8fb4da 210ed13 57971cb 210ed13 57971cb 210ed13 3ed5fef c6d02b3 1d16cc9 c6d02b3 2c7ffe4 c6d02b3 a597e6b c6d02b3 6cdce4d c6d02b3 c6e402b 84291d5 0307843 7206ba2 a597e6b 48e1ac1 758f177 c6d02b3 84291d5 0307843 f2fa35d 0307843 f2fa35d 0b4c2e7 0307843 83d3e5a b4f9b4b 1f26a53 dd2b7f9 1f747ea 7300f25 bf3b5c9 af5aa60 dd2b7f9 f460f8b abb850c 452be41 dd2b7f9 b4f9b4b ae2310a 0c095d9 f460f8b 0c095d9 f460f8b 0c095d9 69fc9e7 0c095d9 69fc9e7 dd2b7f9 b4f9b4b 210ed13 33f3309 210ed13 02471b0 33f3309 b9d2cc5 af5aa60 210ed13 2daa864 210ed13 aac4d05 32ecfac 2c7ffe4 0b4c2e7 210ed13 aac4d05 210ed13 62c5b0c 210ed13 02471b0 aac4d05 2c7ffe4 dd2b7f9 2c7ffe4 02471b0 0b8a852 0c095d9 210ed13 dd2b7f9 210ed13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import gradio as gr
import os
import re
#from tempfile import NamedTemporaryFile
import numpy as np
import spaces
import random
import string
from diffusers import AutoPipelineForText2Image
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html import fromstring
pool = ProcessPoolExecutor(4)
pool.__enter__()
#model_id = "runwayml/stable-diffusion-v1-5"
#model_id = "kandinsky-community/kandinsky-3"
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
pipe = pipe.to(device)
else:
pipe = AutoPipelineForText2Image.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token'))
pipe = pipe.to(device)
def translate(text,lang):
if text == None or lang == None:
return ""
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
if text == "" or lang == "":
return ""
if len(text) > 38:
raise Exception("Translation Error: Too long text!")
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
url = 'https://www.google.com/search'
resp = requests.get(
url = url,
params = {'q': f'{lang} translate {text}'},
headers = {
'User-Agent': random.choice(user_agents)
}
)
content = resp.content
html = fromstring(content)
#src = html.xpath('//pre[@data-placeholder="Enter text"]/textarea')[0].text.strip()
translated = text
try:
trgt = html.xpath('//span[@class="target-language"]')[0].text.strip()
rslt = html.xpath('//pre[@aria-label="Translated text"]/span')[0].text.strip()
if trgt.lower() == lang.lower():
translated = rslt
except:
raise Exception("Translation Error!")
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
print(ret)
return ret
def generate_random_string(length):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
@spaces.GPU(duration=120)
def Piper(_do,_dont):
return pipe(
_do,
height=512,
width=1024,
negative_prompt=_dont,
num_inference_steps=400,
guidance_scale=10
)
def infer(prompt,prompt2):
name = generate_random_string(12)+".png"
prompt_en = translate(prompt,"english")
prompt2_en = translate(prompt2,"english")
if prompt == None or prompt.strip() == "":
_do = 'soft vivid colors, rough texture, dynamic poze, reasonable, realistic, photograph, soft lighting, deep field, highly detailed, bright background'
else:
_do = f'{ prompt_en }, soft vivid colors, rough texture, dynamic poze, reasonable, realistic, photograph, soft lighting, deep field, highly detailed, bright background'
if prompt2 == None or prompt2.strip() == "":
_dont = 'ugly, deformed, disfigured, poor details, bad anatomy, logos, texts, labels'
else:
_dont = f'ugly, deformed, disfigured, poor details, bad anatomy, {prompt2_en} where in {prompt_en}, {prompt2_en}, logos where in {prompt_en}, texts where in {prompt_en}, labels where in {prompt_en}'
image = Piper(_do,_dont).images[0].save(name)
return name
css="""
footer {
display: none !important;
}
#col-container {
margin: 0 auto;
max-width: 15cm;
}
#image-container {
aspect-ratio: 1024 / 512;
}
.dropdown-arrow {
display: none !important;
}
"""
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","30");
document.querySelector("div#prompt2 input").setAttribute("maxlength","30");
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Image Generator
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Textbox(
elem_id="prompt",
placeholder="(Required Content)",
container=False,
rtl=True,
max_lines=1
)
prompt2 = gr.Textbox(
elem_id="prompt2",
placeholder="(Forbidden Content)",
container=False,
rtl=True,
max_lines=1
)
with gr.Row():
run_button = gr.Button("Run")
result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)
prompt.submit(
fn = infer,
inputs = [prompt,prompt2],
outputs = [result]
)
prompt2.submit(
fn = infer,
inputs = [prompt,prompt2],
outputs = [result]
)
run_button.click(
fn = infer,
inputs = [prompt,prompt2],
outputs = [result]
)
demo.queue().launch() |